Pular para o conteúdo principal

História da àlgebra

Fonte: Tópicos de História da Matemática - John K. Baumgart



Estranha e intrigante é a origem da palavra "álgebra". Ela não se sujeita a uma etimologia nítida como, por exemplo, a palavra "aritmética", que deriva do grego arithmos ("número"). Álgebra é uma variante latina da palavra árabe al-jabr (às vezes transliterada al-jebr), usada no título de um livro, Hisab al-jabr w'al-muqabalah, escrito em Bagdá por volta do ano 825 pelo matemático árabe Mohammed ibn-Musa al Khowarizmi (Maomé, filho de Moisés, de Khowarizm). Este trabalho de álgebra é com frequência citado, abreviadamente, como Al-jabr.


Uma tradução literal do título completo do livro é a "ciência da restauração (ou reunião) e redução", mas matematicamente seria melhor "ciência da transposição e cancelamento"- ou, conforme Boher, "a transposição de termos subtraídos para o outro membro da equação" e "o cancelamento de termos semelhantes (iguais) em membros opostos da equação". Assim, dada a equação:


x2 + 5x + 4 = 4 - 2x + 5x3

al-jabr fornece
x2 + 7x + 4 = 4 + 5x3

e al-muqabalah fornece
x2 + 7x = 5x3

Talvez a melhor tradução fosse simplesmente "a ciência das equações".
Ainda que originalmente "álgebra" refira-se a equações, a palavra hoje tem um significado muito mais amplo, e uma definição satisfatória requer um enfoque em duas fases:
(1) Álgebra antiga (elementar) é o estudo das equações e métodos de resolvê-las.
(2) Álgebra moderna (abstrata) é o estudo das estruturas matemáticas tais como grupos, anéis e corpos - para mencionar apenas algumas.
De fato, é conveniente traçar o desenvolvimento da álgebra em termos dessas duas fases, uma vez que a divisão é tanto cronológica como conceitual.


--------------------------------------------------------------------------------

Equações algébricas e notação


A fase antiga (elementar), que abrange o período de 1700 a.C. a 1700 d.C., aproximadamente, caracterizou-se pela invenção gradual do simbolismo e pela resolução de equações (em geral coeficientes numéricos) por vários métodos, apresentando progressos pouco importantes até a resolução "geral" das equações cúbicas e quárticas e o inspirado tratamento das equações polinomiais em geral feito por François Viète, também conhecido por Vieta (1540-1603).


O desenvolvimento da notação algébrica evoluiu ao longo de três estágios: o retórico (ou verbal), o sincopado (no qual eram usadas abreviações de palavras) e o simbólico. No último estágio, a notação passou por várias modificações e mudanças, até tornar-se razoavelmente estável ao tempo de Isaac Newton. É interessante notar que, mesmo hoje, não há total uniformidade no uso de símbolos. Por exemplo, os americanos escrevem "3.1416" como aproximação de Pi, e muitos europeus escrevem "3,1416". Em alguns países europeus, o símbolo "÷" significa "menos". Como a álgebra provavelmente se originou na Babilônia, parece apropriado ilustrar o estilo retórico com um exemplo daquela região. O problema seguinte mostra o relativo grau de sofisticação da álgebra babilônica. É um exemplo típico de problemas encontrados em escrita cuneiforme, em tábuas de argila que remontam ao tempo do rei Hammurabi. A explanação, naturalmente, é feita em português; e usa-se a notação decimal indo-arábica em vez da notação sexagesimal cuneiforme. A coluna à direita fornece as passagens correspondentes em notação moderna. Eis o exemplo:


[1] Comprimento, largura. Multipliquei comprimento por largura, obtendo assim a área: 252. Somei comprimento e largura: 32. Pede-se: comprimento e largura.



[2] [Dado] 32 soma; 252 área. x+y=k
xy=P } ... (A)

[3] [Resposta] 18 comprimento; 14 largura.
[4] Segue-se este método: Tome metade de 32 [que é 16]. k/2
16 x 16 = 256 (k/2)2
256 - 252 = 4 (k/2)2 - P = t2 } ... (B)
A raiz quadrada de 4 é 2.
16 + 2 = 18 comprimento. (k/2) + t = x.
16 - 2 = 14 largura (k/2) - t = y.
[5] [Prova] Multipliquei 18 comprimento por 14 largura.
18 x 14 = 252 área
((k/2)+t) ((k/2)-t)
= (k2/4) - t2 = P = xy.




Nota-se que na etapa [1] o problema é formulado, na [2] os dados são apresentados, na [3] a resposta é dada, na [4] o método de solução é explicado com números e, finalmente, na [5] a resposta é testada.

A "receita" acima é usada repetidamente em problemas semelhantes. Ela tem significado histórico e interesse atual por várias razões.



Antes de tudo não é a maneira como resolveríamos hoje o sistema (A). O procedimento padrão nos atuais textos escolares de álgebra é resolver, digamos, a primeira equação para y (em termos de x), substituir na segunda equação e, então, resolver a equação quadrática resultante em x; isto é, usaríamos o método de substituição. Os babilônios também sabiam resolver sistemas por substituição, mas frequentemente preferiam usar seu método paramétrico. Ou seja, usando-se notação moderna, eles concebiam x e y em termos de uma nova incógnita (ou parâmetro) t fazendo x=(k/2)+t e y=(k/2)-t.



Então o produto

xy = ((k/2) + t) ((k/2) - t) = (k/2)2 - t2 = P

levava-os à relação (B):

(k/2)2 - P = t2



Em segundo lugar, o problema acima tem significado histórico porque a álgebra grega (geométrica) dos pitagóricos e de Euclides seguia o mesmo método de solução - traduzida, entretanto, em termos de segmentos de retas e áreas e ilustrada por figuras geométricas. Alguns séculos depois, outro grego, Diofanto, também usou a abordagem paramétrica em seu trabalho com equações "diofantinas". Ele deu início ao simbolismo moderno introduzindo abreviações de palavras e evitando o estilo um tanto intrincado da álgebra geométrica.

Em terceiro lugar, os matemáticos árabes (inclusive al-Khowarizmi) não usavam o método empregado no problema acima; preferiam eliminar uma das incógnitas por substituição e expressar tudo em termos de palavras e números.

Antes de deixar a álgebra babilônica, notemos que eles eram capazes de resolver uma variedade surpreendente de equações, inclusive certos tipos especiais de cúbicas e quárticas - todas com coeficientes numéricos, naturalmente.


--------------------------------------------------------------------------------

Álgebra no Egito


A álgebra surgiu no Egito quase ao mesmo tempo que na Babilônia; mas faltavam à álgebra egípcia os métodos sofisticados da álgebra babilônica, bem como a variedade de equações resolvidas, a julgar pelo Papiro Moscou e o Papiro Rhind - documentos egípcios que datam de cerca de 1850 a.C. e 1650 a.C., respectivamente, mas refletem métodos matemáticos de um período anterior. Para equações lineares, os egípcios usavam um método de resolução consistindo em uma estimativa inicial seguida de uma correção final - um método ao qual os europeus posteriormente deram o nome umtanto abstruso de "regra da falsa posição". A álgebra do Egito, como a da Babilônia, era retórica.

O sistema de numeração egípcio, relativamente primitivo em comparação com o dos babilônios, ajuda a explicar a falta de sofisticação da álgebra egípcia. Os matemáticos europeus do século XVI tiveram de estender a noção indo-arábica de número antes de poderem avançar significativamente além dos resultados babilônios de resolução de equações.


--------------------------------------------------------------------------------

Álgebra geométrica grega


A álgebra grega conforme foi formulada pelos pitagóricos e por Euclides era geométrica. Por exemplo, o que nós escrevemos como:

(a+b)2 = a2 + 2ab + b2

era concebido pelos gregos em termos do diagrama apresentado na Figura 1 e era curiosamente enunciado por Euclides em Elementos, livro II, proposição 4:

Se uma linha reta é dividida em duas partes quaisquer, o quadrado sobre a linha toda é igual aos quadrados sobre as duas partes, junto com duas vezes o retângulo que as partes contém. [Isto é, (a+b)2 = a2 + 2ab + b2.]

Somos tentados a dizer que, para os gregos da época de Euclides, a2 era realmente um quadrado.

Não há dúvida de que os pitagóricos conheciam bem a álgebra babilônica e, de fato, seguiam os métodos-padrão babilônios de resolução de equações. Euclides deixou registrados esses resultados pitagóricos. Para ilustrá-lo, escolhemos o teorema correspondente ao problema babilônio considerado acima.







Do livro VI dos Elementos, temos a proposição 28 (uma versão simplificada):

Dada uma linha reta AB [isto é, x+y=k], construir ao longo dessa linha um retângulo com uma dada área [xy = P], admitindo que o retângulo "fique aquém" em AB por uma quantidade "preenchida" por outro retângulo [o quadrado BF na Figura 2], semelhante a um dado retângulo [que aqui nós admitimos ser qualquer quadrado].







Na solução desta construção solicitada (Fig.2) o trabalho de Euclides é quase exatamente paralelo à solução babilônica do problema equivalente. Conforme indicado por T.L.Heath / EUCLID: II, 263/, os passos são os seguintes:



Bissecte AB em M: k/2
Construa o quadrado MBCD: (k/2)2
Usando VI, 25, construa o quadrado DEFG com área igual ao excesso de MBCD sobre a área dada P: t2 = (k/2)2 - P
Então é claro que y = (k/2) - t



Como fazia frequentemente, Euclides deixou o outro caso para o estudante - neste caso, x=(k/2)+t, o que Euclides certamente percebeu mas não formulou.

É de fato notável que a maior parte dos problemas-padrão babilônicos tenham sido "refeitos" desse modo por Euclides. Mas por quê? O que levou os gregos a darem à sua álgebra esta formulação desajeitada? A resposta é básica: eles tinham dificuldades conceituais com frações e números irracionais.



Mesmo que os matemáticos gregos fossem capazes de contornar as frações, tratando-as como razões de inteiros, eles tinham dificuldades insuperáveis com números como a raiz quadrada de 2, por exemplo. Lembramos o "escândalo lógico" dos pitagóricos quando descobriram que a diagonal de um quadrado unitário é incomensurável com o lado (ou seja, diag/lado é diferente da razão de dois inteiros).

Assim, foi seu estrito rigor matemático que os forçou a usar um conjunto de segmentos de reta como domínio conveniente de elementos. Pois, ainda que raiz quadrada de 2 não possa ser expresso em termos de inteiros ou suas razões, pode ser representado como um segmento de reta que é precisamente a diagonal do quadrado unitário. Talvez não seja apenas um gracejo dizer que o contínuo linear era literalmente linear.



De passagem devemos mencionar Apolônio (c. 225 a.C.), que aplicou métodos geométricos ao estudo das secções cônicas. De fato, seu grande tratado Secções cônicas contém mais geometria analítica das cônicas - toda fraseada em terminologia geométrica - do que os cursos universitários de hoje.

A matemática grega deu uma parada brusca. A ocupação romana tinha começado, e não encorajava a erudição matemática, ainda que estimulasse alguns outros ramos da cultura grega. Devido ao estilo pesado da álgebra geométrica, esta não poderia sobreviver somente na tradição escrita; necessitava de um meio de comunicação vivo, oral. Era possível seguir o fluxo de idéias desde que um instrutor apontasse para diagramas e explicasse; mas as escolas de instrução direta não sobreviveram.


--------------------------------------------------------------------------------

Álgebra na Europa
A álgebra que entrou na Europa (via Liber abaci de Fibonacci e traduções) havia regredido tanto em estilo como em conteúdo. O semi-simbolismo (sincopação) de Diofanto e Brahmagupta e suas realizações relativamente avançadas não estavam destinados a contribuir para uma eventual irrupção da álgebra.

A renascença e o rápido florescimento da álgebra na Europa foram devidos aos seguintes fatores:

facilidade de manipular trabalhos numéricos através do sistema de numeração indo-arábico, muito superior aos sistemas (tais como o romano) que requeriam o uso do ábaco;

invenção da imprensa com tipos móveis, que acelerou a padronização do simbolismo mediante a melhoria das comunicações, baseada em ampla distribuição;

ressurgimento da economia, sustentando a atividade intelectual; e a retomada do comércio e viagens, facilitando o intercâmbio de idéias tanto quanto de bens.

Cidades comercialmente fortes surgiram primeiro na Itália, e foi lá que o renascimento algébrico na Europa efetivamente teve início.



Antonio Carlos Carneiro Barroso

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de