Pular para o conteúdo principal

Leis do seno e do cosseno

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        
        



Os problemas envolvendo trigonometria são resolvidos através da comparação com triângulos retângulos. Mas no cotidiano geralmente não encontramos tamanha facilidade, algumas situações envolvem triângulos acutângulos ou triângulos obtusângulos. Nesses casos necessitamos do auxílio da lei dos senos ou dos cossenos.

Lei dos senos

A lei dos senos estabelece relações entre as medidas dos lados com os senos dos ângulos opostos aos lados. Observe:


Exemplo 1

No triângulo a seguir, determine o valor dos segmentos x e y.

Aplicando a lei dos senos, temos:



Lei dos cossenos

Nos casos em que não podemos aplicar a lei dos senos, temos o recurso da lei dos cossenos. Ela nos permite trabalhar com a medida de dois segmentos e a medida de um ângulo. Dessa forma, se dado um triângulo ABC de lados medindo a, b e c, temos:

a² = b² + c² - 2 * b * c * cos A
b² = a² + c² - 2 * a * c * cos B
c² = a² + b² - 2 * a * b * cos C

Exemplo 2

Determine o valor do lado oposto ao ângulo de 60º. Observe figura a seguir:






x² = 6² + 8² - 2 * 6 * 8 * cos 60º
x² = 36 + 64 – 96 * 1/2
x² = 100 – 48
x² = 52
√x² = √52
x = 2√3


Exemplo 3

Em um triângulo, os lados de medidas 6√3 cm e 8 cm formam um ângulo de 30º. Determine a medida do terceiro lado.

De acordo com a situação, o lado a ser determinado é oposto ao ângulo de 30º. Dessa forma, aplicamos a fórmula da lei dos cossenos da seguinte maneira:


x² = (6√3)² + 8² - 2 * 6√3 * 8 * cos 30º
x² = 36 * 3 + 64 – 2 * 6√3 * 8 * √3/2
x² = 108 + 64 – 96 * √3 * √3/2
x² = 172 – 48 * 3
x² = 172 – 144
x² = 28
x = 2√7 cm
extraido de www.mundoeducacao.com.br

Comentários

  1. gostei.. me ajudou bastante!

    ResponderExcluir
  2. 52|2
    26|2
    13|13
    1

    Pq no exemplo dois está 2√3? Não deveria ser 2√13?

    ResponderExcluir
    Respostas
    1. Creio que está errado também, cheguei no resultado 2*(13)^(1/2).

      Excluir
    2. também achei esse resultado 2√13

      Excluir

Postar um comentário

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de