cead20136

Pesquisar no blog

Carregando...

Pesquisar na net

Custom Search

sábado, 4 de janeiro de 2014

Logaritmo quociente

Logaritmo do quociente:




3. FUNÇÃO LOGARÍTMICA

É toda função f: que associa a cada x o logaritmo, na base b, de x:

f(x) = logb x

Exemplos:

a) f(x) = log3 x

b) g(x) = log1/3 x

Gráficos da função logarítmica




Observações:

a) O gráfico da função logarítmica passa sempre pelo ponto (1,0).

b) O gráfico nunca toca o eixo y e não ocupa pontos dos quadrantes II e III.

c) Quando a > 1, a função logarítmica é crescente (x1 > x2 loga x1 > loga x2).

d) Quando 0 < a <1 a="" decrescente="" fun="" logar="" o="" tmica="" x1=""> x2 loga x1 < loga x2).


4. EQUAÇÕES LOGARÍTMICAS

Para resolver equações logarítmicas, devemos aplicar as propriedades e, em seguida, verificar se os valores obtidos para a incógnita estão de acordo com as condições de existência estabelecidas.

Exemplo:

Resolver a equação log2 x + log2 2x = 3.

Solução:

Condições de existência:



Aplicando a propriedade do logaritmo do produto, e a definição de logaritmo, temos:

log2 x + log2 2x = 3 →log2 (x . 2x) = 3 →

log2 2x2 = 3 →23 = 2x2 →8 = 2x2 → x2 = 4→ x = 2 ou x = -2

Comparando os valores obtidos com as condições de existência estabelecidas, verificamos que – 2 é um valor impróprio.

Logo:

V = {2}

Nenhum comentário:

Postar um comentário

co

assine o feed

Postagens

acompanhe

Comentários

comente também

Widget Códigos Blog modificado por Dicas Blogger