Pular para o conteúdo principal

Probabilidades

Nos espaços amostrais equiprováveis temos que os eventos possuem probabilidades iguais de ocorrência. No lançamento de um dado temos que a ocorrência de cada face é a mesma, isto é 1/6. Nesses casos, calculamos a probabilidade de um evento ocorrer relacionando o número de casos favoráveis com o número de casos possíveis.

Exemplo 1

Ao lançarmos por duas vezes sucessivas um dado, qual a probabilidade de:

a) ocorrer 2 no primeiro lançamento e um número impar no segundo?

Precisamos que aconteça o seguinte evento: (2,1), (2,3), (2,5). Assim, temos que a probabilidade é de 3 chances em 36.

P(E) = 3/36 = 1/12.

b) a multiplicação entre os números for maior que 10?
(2,6), (3,4), (3,5), (3,6), (4,3), (4,4), (4,5), (4,6), (5,3), (5,4), (5,5), (5,6), (6,2), (6,3), (6,4), (6,5).

P(E) = 16/36 = 4/9

Exemplo 2

Sorteando ao acaso um número de 1 a 50, qual a probabilidade de sair um múltiplo de 4?

Temos que os múltiplos de 4 compreendidos entre 1 e 50, são: {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48}, então:

P(E) =12/50 = 6/25


Exemplo 3

Uma urna contém 100 bolas numeradas de 1 a 100. Uma delas é extraída ao acaso. Qual é a probabilidade de o número sorteado ser:

a) 18?
P(E) = 1/100

b) maior que 63?
P(E) = 34/100 = 17/50

c) formado por dois algarismos
P(E) = 90/100 = 9/10



Exemplo 4

Um baralho possui 52 cartas. Uma delas é extraída ao acaso. Qual é a probabilidade de ser sorteada:

a) a carta com o rei de copas?
P(E) = 1/52

b) uma carta de espadas.
O baralho é formado por quatro naipes: copas, ouro, espadas, paus. Dessa forma temos 13 cartas de copas, 13 cartas de ouro, 13 cartas de espadas e 13 cartas de paus. A probabilidade de retirar uma carta de espadas é dada por:
P(E) = 13/52 = 1/4

c) uma carta que não seja o 6?
Cada número está associado a um naipe, portanto, temos quatro cartas com numeração 6. Então 52 – 4 = 48
P(E) = 48/52 = 12/13

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de