cead20136

Pesquisar no blog

Carregando...

Pesquisar na net

Custom Search

sexta-feira, 5 de setembro de 2014

Progressão aritmetica

As atividades envolvendo progressões exigem atenção por parte dos estudantes, pois devemos ter conhecimento das fórmulas matemáticas na resolução das progressões. A partir da interpretação do enunciado deveremos escolher qual a fórmula adequada. Fique atento às questões contextualizadas e interdisciplinarizadas, as progressões possuem ligações diretas com outras ciências.

Veja exemplos de atividades envolvendo progressões aritméticas e geométricas e as formas de resolução comentadas.


Exemplo 1
Determine o 32º termo da sequência (2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38,...).
Resolução
Verificamos que a sequência dada é uma Progressão Aritmética de razão igual a 3, pois:
r = 5 – 2 = 3
r = 8 – 5 = 3, e assim sucessivamente.
A expressão utilizada na determinação de um dos termos da PA é a seguinte:
an = a1 + (n – 1)*r
a32 = ?
a1 = 2
r = 3
n = 32

a32 = 2 + (32 – 1) * 3
a32 = 2 + 31 * 3
a32 = 2 + 93
a32 = 95

Portanto, o 32º termo da sequência será o número 95.


Exemplo 2
Qual a soma dos números pares compreendidos entre 1 e 201?
Resolução
Precisamos determinar o primeiro e o último número par do intervalo, dessa forma temos:
a1 = 2
an = 200
r = 2

Vamos determinar o número de termos:

Soma dos termos:

A soma dos números pares compreendidos entre 1 e 201 é igual a 10 100.

Exemplo 3
Determine o 8º termo da seguinte Progressão Geométrica (3, 9, 27, 81,....)
A fórmula que determina o termo de uma PG é dada pela seguinte expressão matemática: an = a1*qn–1.
Resolução
a8 = ?
a1 = 3
q = 3
n = 8

a8 = 3 * 38 – 1
a8 = 3 * 37
a8 = 3 * 2187
a8 = 6561

O 8º termo da PG é igual a 8.


Exemplo 4
Determine a soma dos 9 primeiros termos da sequência (1,2,4,8,...).
Resolução

A soma de uma PG finita pode ser expressa pela seguinte fórmula matemática:


a1 = 1
q = 2
n = 9


Exemplo 5
Dada a PA (12, 8, 4, 0, -4,...), determine o 20º termo.
Resolução
Temos que a PA dada é uma progressão decrescente, veja:
r = 8 – 12 = – 4
r = 4 – 8 = – 4


an = a1 + (n – 1)*r
a20 = 12 + (20 – 1) * (– 4)
a20 = 12 + 19 * (– 4)
a20 = 12 – 76
a20 = – 64

O 20º termo da PA é o número – 64.

Nenhum comentário:

Postar um comentário

co

assine o feed

Postagens

acompanhe

Comentários

comente também

Widget Códigos Blog modificado por Dicas Blogger