Pular para o conteúdo principal

Equação Completa do segundo grau





Equação do Segundo Grau

Chamamos de equação do 2º grau as equações do tipo:

Equação Segundo Grau

onde a, b e c são números conhecidos com a 0.

Exemplos:

1º) 2x2 – 3x + 5 = 0 (a = 2, b = –3 e c = 5)

2º) 5x2 + 7x = 0 (a = 5, b = 7 e c = 0)

3º) 4x2– 11 = 0 (a = 4, b = 0 e c = –11)

A – Resolução da equação do 2º grau

Exemplos:

1º) Resolver em R a equação:

x2-16=0

Notemos que nesta equação do 2º grau o coeficiente b é igual a zero por isto ela é chamada de equação do 2º grau incompleta. Vamos acompanhar a sua resolução:

x2-16=0 x2=16

x2-16=0 x = –4 ou x = +4

Assim: Equação do Segundo Grau


2º) Resolver em R a equação:

x2 + 11x = 0

Notemos que nesta equação do 2º grau o coeficiente c é igual a zero e por isto ela é chamada, também, de equação do 2º grau incompleta. Vamos acompanhar a sua resolução:

x2 + 11x = 0 x(x + 11) = 0

x2 + 11x = 0 x = 0 ou x + 11 = 0

x2 + 11x = 0 x = 0 ou x = –11

Assim:
Equaçao do Segundo Grau


3º) Resolver em R a equação:

x2 + 4x + 4 = 16

Observemos que x2 + 4x + 4 é, na sua forma fatorada, é igual a (x + 2)2, então:

x2 + 4x + 4 = 16 passa a ser (x + 2)2 = 16

Assim:


x2 + 4x + 4 = 16 (x + 2)2 = 16

x2 + 4x + 4 = 16 x + 2 = –4 ou x + 2 = 4

x2 + 4x + 4 = 16 x = –6 ou x = 2

Assim: Equação do Segundo Grau


4º) Resolver em R a equação:

x2– 6x + 5 = 0

Observemos que x2– 6x + 5 não é um quadrado perfeito, donde se conclui que o procedimento utilizado no exemplo anterior não poderá repetido. Não poderá ser repetido a menos que façamos algumas modificações na equação, como veremos a seguir:

x2é “o quadrado do primeiro”, 6x é “duas vezes o primeiro (que é x) pelo segundo”, logo, o segundo só poderá ser o número 3 e, assim, “o quadrado do segundo será igual a 9”. Como o quadrado perfeito só aparecerá se tivermos x2 – 6x + 9, acrescentaremos aos dois membros da igualdade o número 9.

Assim:


x2 – 6x + 5 = 0 x2– 6x + 5 + 9 = 9

x2– 6x + 5 = 0 x2– 6x + 9 = 4

x2– 6x + 5 = 0 (x – 3)2 = 4

x2– 6x + 5 = 0 x – 3 = –2 ou x – 3 = 2

x2 – 6x + 5 = 0 x = 1 ou x = 5

Assim: Equação Segundo Grau



B – Fórmula de Bhaskara

Vamos resolver a equação: ax2 + bx + c = 0, que é a forma geral da equação do 2º grau.
Inicialmente multiplicamos os dois membros da igualdade por a. Teremos:

a2x2+ abx + ac = 0

Notemos que a expressão:


Equação Segundo Grau

é um quadrado perfeito e, assim podemos acrescentar aos dois membros da igualdade o número Equação Segundo Grau.
a2x2 + abx + Equação Segundo Grau = Equação Segundo Grau

Logo:


Equação Segundo Grau

Chamando b2– 4ac de discriminante da equação do 2º grau, que será representado pela letra grega delta (delta), teremos:

Equação Segundo Grau



Dessa forma, resolvemos a equação do 2º grau com os coeficientes literais a, b e c o que nos permite estabelecer uma fórmula já nossa conhecida, chamada “fórmula de Bhaskara” a qual resolverá qualquer equação do 2º grau, bastando substituir os coeficientes pelos números na equação a resolver.



Equação Segundo Grau



Exemplo

Resolver em R a equação

5x2– 12x + 4 = 0

temos, a = 5, b = –12 e c = 4

substituindo na fórmula de Bhaskara.

Equação Segundo Grau



Observação: Se a equação não estiver na forma ax2 + bx + c = 0 deve ser preparada através das operações conhecidas tais como eliminação de denominadores, retirada de parênteses, dentre outras.



C. Discussão do Número de Soluções da Equação do 2º Grau

Quando resolvemos uma equação do 2º grau, já colocada na sua forma normal é importante observar que três casos podem surgir em relação ao cálculo do discriminante. Observe:

1º caso: > 0 A equação terá duas raízes reais e distintas.

Exemplo

Resolver em R:


Equação Segundo grau



2º caso: = 0 A equação terá duas raízes reais e iguais.

Exemplo

Resolver em R:



Equação Segundo grau



3º caso: < 0 A equação não terá raízes reais. Exemplo

Equação Segundo grau

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de