Pular para o conteúdo principal

Circunferências

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        




Temos que a equação da circunferência se apresenta na forma reduzida ou na forma normal. A forma reduzida é expressa por (x – xC)² + (y – yC)² = r², onde xC e yC são as coordenadas do centro da circunferência, r o raio e x e y coordenadas de um ponto P posicional da circunferência. A equação normal da circunferência é obtida através da eliminação dos parênteses e redução dos termos semelhantes.

(x – a)² + (y – b)² = r²
x² – 2xa + a² + y² – 2yb + b² – r² = 0
x2 + y2 – 2ax – 2by + a2 + b2 – r2 = 0

Essa equação é mais uma forma de equacionar uma circunferência e a partir dela determinar o centro e o raio que a equação está representando, isso poderá ser feito utilizando dois métodos diferentes: comparação e redução.

Comparação

Dada a equação x2 + y2 – 2x + 8y + 8 = 0, comparado-a com a equação x2 + y2 – 2ax – 2by + a2 + b2 – r2 = 0, temos:

–2a = –2
a = 1

–2b = 8
2b = –8
b = –4

a2 + b2 – r2 = 8
12 + (–4)2 – r2 = 8
1 + 16 – r2 = 8
17 – r2 = 8
– r2 = 8 – 17
– r2 = – 9
r = 3

Portanto, a circunferência de equação igual a x2 + y2 – 2x + 8y + 8 = 0 terá centro igual a C(1,– 4) e raio igual a r = 3.


Redução

Consiste em transformar a equação normal em reduzida e assim identificar o centro e o raio.

Pegando como exemplo a equação x2 + y2 – 2x + 8y + 8 = 0, iremos transformá-la em uma equação reduzida seguindo os passos abaixo:

1º passo

É preciso agrupar os termos em x e os termos em y, e isolar o termo independente.
(x2 – 2x) + (y2 + 8y) = – 8

2º passo

Somar aos dois membros da igualdade um termo que torne o agrupamento em x um quadrado perfeito.

(x2 – 2x +1) + (y2 + 8y) = – 8 +1

3º passo

Somar aos dois membros da igualdade um termo que torne o agrupamento em y um quadrado perfeito.

(x2 – 2x +1) + (y2 + 8y + 16) = – 8 +1 + 16

(x2 – 2x +1) + (y2 + 8y + 16) = 9

(x – 1)2 + (y + 4)2 = 9

Comparando com a equação reduzida.

(x – 1)2 + (y + 4)2 = 9

(x + a)2 + (y + b)2 = r2

Portanto, o centro dessa equação da circunferência será C (1, –4) e R = 3.
fonte www.mundoeducacao.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de