Pular para o conteúdo principal

Logaritmos

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        
        



Os logaritmos foram criados no intuito de facilitar os cálculos envolvendo números muito grandes ou muito pequenos. Os logaritmos reduzem esses números a algumas bases, a mais utilizada é a base decimal. As propriedades operatórias dos logaritmos possuem o objetivo de transformar multiplicações em somas, divisões em subtrações, potenciações em multiplicações e radiciações em divisões. Essas transformações facilitam os cálculos mais extensos.

Logaritmo de um produto

Considerando a, b e c números reais positivos e a ≠ 1, temos a seguinte propriedade:

loga(b*c) = logab + logac

Exemplo 1

Dados log2 = 0,301 e log3 = 0,477, determine o log12.

log12 → log12 = log(2 * 2 * 3) → log12 = log2 + log2 + log3 → log12 = 0,301 + 0,301 + 0,477 → log 12 = 1,079

Exemplo 2

Determine o valor de log2(8*32).

log2(8*32) = log28 + log232 = 3 + 5 = 8


Logaritmo de um quociente

Considerando a, b e c números reais positivos e a ≠ 1, temos a seguinte propriedade:

loga(b/c) = logab – logac

Exemplo 3

Sabendo que log30 = 1,477 e log5 = 0,699, determine log6.

log6 = (30/5) = log30 – log5 = 1,477 – 0,699 = 0,778

Exemplo 4

log3(6561/81) = log36561 – log381 = 8 – 4 = 5


Logaritmo de uma potência

Considerando a e b números reais positivos, com a ≠ 1, e m um número real, temos a seguinte propriedade:

logabm = m * logab

Exemplo 5

Sabendo que log 2 = 0,3010, calcule o valor de log 64.

log 64 = log 26 = 6 * log 2 = 6 * 0,3010 = 1,806


Exemplo 6

Dado log 2x = 2,4 e log 2 = 0,3, calcule x.

log 2x = 2,4 → x*log 2 = 2,4 → x * 0,3 = 2,4 → x = 2,4/0,3 → x = 8


Mudança de base

Para passarmos logab, com a e b positivos e a ≠ 1, para a base c, com c > 0 e c ≠ 1, utilizamos a seguinte expressão:

logab = logcb/ logca, com logca ≠ 0


Exemplo 7

Passando log49 para a base 2.

log49 = log29 / log24 = log29 / 2


Exemplo 8

Sabendo que log 4 = 0,60 e log 5 = 0,70, calcule log54.

log54 = log4 / log5 = 0,60 / 0,70 → log54 = 0,86


Os logaritmos criados por John Napier e Jobst Burgi, e posteriormente adaptados por Henry Briggs, possuem a seguinte lei de formação:

logab = x, onde:

a = base do logaritmo
b = logaritmando
x = logaritmo

O logaritmo de um número b em uma base a é o expoente x que se deve aplicar à base a para se ter o número b. Dessa forma:

logab = x ↔ ax = b

Exemplos:

log39 ↔ 32 = 9
log10100 ↔ 102 = 100
log216 ↔ 24 = 16
log981 ↔ 92 = 81

A partir dessa definição podemos apresentar algumas definições que auxiliarão no desenvolvimento de algumas situações envolvendo logaritmo. Veja:

O logaritmo do número 1 em qualquer base sempre será igual a 0.

loga1 = 0, pois a0 = 1

O logaritmo de qualquer número a na própria base a será igual a 1.

logaa = 1, pois a1 = a

O logaritmo de uma potência da base é o expoente, em qualquer base.

logaam = m, pois m * logaa = m * 1 = m

A potência de base a e expoente logab é igual a b.

alogab = b, pois logab = x → ax = b

Dois logaritmos são iguais, quando seus logaritmandos forem iguais.

logab = logac ↔ b = c



Exemplos

Aplicar a definição de logaritmo para calcular o valor de x em cada caso:

a) log327 = x → 3x = 27 → x = 3

b) log81x = 3/4 → x = 813/4 → x = (34)3/4 → x = 312/4 → x = 33 → x = 27

c) log4√2 = x → 4x = √2 → 22x = √2 → 22x = 21/2 → 2x = 1/2 → x = 1/4

d) logx8 = 2 → x2 = 8 → √x = √8 → x = 2√2

e) log4(2x – 1) = 1/2 → 2x – 1 = 41/2 → 2x – 1 = √4 → 2x – 1 = 2 → 2x = 3 → x = 3/2

f) log1818 = x → 18x = 18 → x = 1

g) logx1024 = 2 → x2 = 1024 → √x² = √1024 → x = 32

h) log40,25 = x → 4x = 0,25 → 4x = 25/100 → 4x = 1/4 → 4x = 4–1 → x = –1

i) 16log25 = (24)log25 = (2log25)4 = 54 = 625

j) log0,01 = x → 10x = 0,01 → 10x = 1/100 → 10x = 10–2 → x = –2
Os logaritmos possuem várias aplicações na Matemática e em diversas áreas do conhecimento, como Física, Biologia, Química, Medicina, Geografia entre outras. Iremos através de exemplos demonstrar a utilização das técnicas de logaritmos na busca de resultados para as variadas situações em questão.

Exemplo 1 – Matemática Financeira

Uma pessoa aplicou a importância de R$ 500,00 numa instituição bancária que paga juros mensais de 3,5%, no regime de juros compostos. Quanto tempo após a aplicação o montante será de R$ 3 500,00?

Resolução:
Nos casos envolvendo a determinação do tempo e juros compostos, a utilização das técnicas de logaritmos é imprescindível.

Fórmula para o cálculo dos juros compostos: M = C * (1 + i)t. De acordo com a situação problema, temos:

M (montante) = 3500
C (capital) = 500
i (taxa) = 3,5% = 0,035
t = ?

M = C * (1 + i)t
3500 = 500 * (1 + 0,035)t
3500/500 = 1,035t
1,035t = 7

Aplicando logaritmo

log 1,035t = log 7
t * log 1,035 = log 7 (utilize tecla log da calculadora científica )
t * 0,0149 = 0,8451
t = 0,8451 / 0,0149
t = 56,7

O montante de R$ 3 500,00 será originado após 56 meses de aplicação.


Exemplo 2 – Geografia

Em uma determinada cidade, a taxa de crescimento populacional é de 3% ao ano, aproximadamente. Em quantos anos a população desta cidade irá dobrar, se a taxa de crescimento continuar a mesma?

População do ano-base = P0
População após um ano = P0 * (1,03) = P1
População após dois anos = P0 * (1,03)2= P2

População após x anos = P0 * (1,03)x = Px

Vamos supor que a população dobrará em relação ao ano-base após x anos, sendo assim, temos:

Px = 2*P0
P0 * (1,03)x = 2 * P0
1,03x = 2

Aplicando logaritmo

log 1,03x = log 2
x * log 1,03 = log2
x * 0,0128 = 0,3010
x = 0,3010 / 0,0128
x = 23,5

A população dobrará em aproximadamente 23,5 anos.


Exemplo 3 – Química

Determine o tempo que leva para que 1000 g de certa substância radioativa, que se desintegra a taxa de 2% ao ano, se reduza a 200 g. Utilize a seguinte expressão:
Q = Q0 * e–rt, em que Q é a massa da substância, r é a taxa e t é o tempo em anos.

Q = Q0 * e–rt
200 = 1000 * e–0,02t
200/1000 = e–0,02t
1/5 = e–0,02t (aplicando definição)
–0,02t = loge1/5
–0,02t = loge5–1
–0,02t = –loge5
–0,02t = –ln5 x(–1)
0,02t = ln5
t = ln5 / 0,02
t = 1,6094 / 0,02
t = 80,47

A substância levará 80,47 anos para se reduzir a 200 g.
fonte www.mundoeducacao.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de