cead20136

sexta-feira, 11 de novembro de 2016

E=mc2 Einstein e a equivalência entre matéria e energia


Einstein, em célebre recorte de uma foto da Universidade de Jerusalém
Você já deve ter visto a seguinte equação: E=mc2

Essa é a mais célebre equação científica do século 20 e foi desenvolvida por Albert Einstein. Ela estabelece a equivalência quantitativa da transformação de matéria em energia ou vice-versa.

Nela, E = energia, m = massa e c2 = velocidade da luz elevada ao quadrado. Sendo a velocidade da luz 300.000 Km/s ou, nas unidades do Sistema Internacional de Unidades, 300.000.000 m/s, a energia teoricamente obtenível da transformação completa de um único quilograma de massa é de astronômicos 9 x 1016Joules [1kg . (300.000.000 m/s)2].

Para se ter idéia do significado desse número, segundo a equação de Einstein, a transformação completa de dez quilogramas de massa produziria uma quantidade de energia suficiente para evaporar toda a água da Baía de Guanabara.

Transformação de matéria em energia
À primeira vista, essa sentença matemática parece mais próxima dos misteriosos cálculos relativistas do grande cientista alemão que da física que aprendemos nas salas de aula.

Na verdade, a parte relativista da equação se concentra no elemento "c", a velocidade da luz que, segundo a teoria da relatividade, é a única constante do universo. Ou seja, tempo, espaço, matéria e energia são relativos, mas a velocidade da luz no vácuo é sempre a mesma, independentemente do referencial adotado para medi-la.

Entender o porquê de uma quantidade de matéria se converter em outra quantidade equivalente de energia em uma proporção direta da velocidade da luz, implica observar o aspecto de constante relativística dessa grandeza.

No restante, podemos comparar a equação de Einstein com os desdobramentos matemáticos de duas "formulinhas" bem conhecidas.

Fórmulas
1a. A equação da segunda lei de Newton, princípio fundamental da dinâmica:

# F = m.a

Onde: F = força, m = massa e a = aceleração.

2a. A equação que define energia ou trabalho em função da força e distância.

# E = F.d

Onde: E = energia ou trabalho, F= força e d= distância.

No Sistema Internacional de Unidades, isso significa que, quando deslocamos uma massa de peso 1 Newton pela distância de 1 metro, produzimos 1 Joule de trabalho, para o que precisamos consumir 1 Joule de energia.


Página 3


Como peso é a força resultante da aceleração da gravidade, basta recorrermos à equação de Newton citada e à aritmética básica para calcularmos qual massa corresponde à força-peso de 1 Newton, para aceleração da gravidade g = 9,8m/s2.

Força = massa x aceleração

Força-peso = massa x aceleração da gravidade

Como no exemplo a força-peso = 1N e aceleração da gravidade = 9,8m/s2

Então: 1N = m x 9,8m/s2 m = 1/9,8 = 0,102 kg

Assim, quando deslocamos uma massa de 0,102 kg pela distância de 1 metro, produzimos 1 Joule de trabalho e consumimos 1 Joule de energia, desconsideradas as perdas e outras interações.

Exemplificada essa correlação conhecida entre massa e energia, podemos voltar à equação de Einstein, E = mc2.

Se combinarmos a equação de Newton e a definição de energia/trabalho temos:

1. E = F.d

2. F = m.a

Substituindo F na equação 1 por seus equivalente m.a da equação 2, temos:

3. E = m.a.d

Aceleração é a variação da velocidade ao longo do tempo, ou v/t, onde v = velocidade e t= tempo.

Substituindo, na equação 3, a por v/t, temos:

E = m.a.d E = m. v/t. d

Aritmeticamente, E = m. v/t. d = E = m. v. d/t

d/t é distância dividida pelo tempo, o que é o mesmo que velocidade (v).

Assim, E = m.v.d/t é o mesmo que E = m.v.v ou E= m.v2

A fórmula de Einstein e a física do dia-a-dia
Temos, então, que a equação de Einstein que estabelece equivalência entre quantidades de matéria e energia não é tão diferente assim das equações da física do nosso dia-a-dia. Podemos perceber claramente a semelhança aritmética e física entre E = m.c2 e E = m.v2, principalmente se lembrarmos que a constante "c" também representa uma velocidade.

Claro que há distinções a fazer, uma vez que a equação de Einstein versa sobre a transformação de matéria em energia ou vice-versa, enquanto as equações que decompomos e analisamos tratam do trabalho produzido ou da energia necessária para deslocar uma quantidade de massa, o que em termos conceituais é bem diferente.

Mas entender as semelhanças e diferenças entre as equações da física básica e da física avançada é um bom exercício para melhor compreender a ambas.
Carlos Roberto de Lana

Nenhum comentário:

Postar um comentário