Pular para o conteúdo principal

Equações Diferencias

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
    


Equações Diferenciais
Se y é uma função de x, e n é um inteiro positivo, então uma relação de igualdade (que não se reduz a uma identidade) que envolva x, y, y', y'', ...,y(n) é chamada uma equação diferencial de ordem n.

DEFINIÇÃO: Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida (a incógnita da equação).

CLASSIFICAÇÃO
  • EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO): Envolve derivadas de uma função de uma só variável independente.
  • EQUAÇÃO DIFERENCIAL PARCIAL (EDP): Envolve derivadas parciais de uma função de mais de uma variável independente.
ORDEM: é a ordem da derivada de mais alta ordem da função incógnita que figura na equação.
Exemplos:
y' = 2x
tem ordem 1 e grau 1
y"+x2(y')3 - 40y = 0 tem ordem 2 e grau 3
y"'+x2y3 = x.tanx
tem ordem 3 e grau 3
RESOLUÇÃO
A solução de uma equação diferencial é uma função que não contém derivadas nem diferenciais e que satisfaz a equação dada (ou seja, a função que, substituída na equação dada, a transforma em uma identidade).
Ex: Equação diferencial ordinária: = 3x2 - 4x + 1
dy = (3x2 - 4x + 1) dx
dy = 3 x2dx - 4 xdx + dx + C
y = x3 - 2x2 + x + C (solução geral)
Uma solução particular pode ser obtida da geral através, por exemplo, da condição y(-1) = 3
(condição inicial)
3 = -1 - 2 - 1 + C seta.gif (302 bytes)C = 7 seta.gif (302 bytes) y = x3 - 2x2 + x + 7 (solução particular)
Observação: Em qualquer dos dois casos, a prova pode ser feita derivando a solução e, com isso, voltando à equação dada.
As soluções se classificam em:
Solução geral - apresenta n constantes independentes entre si (n = ordem da EDO). Essas constantes, de acordo com a conveniência, podem ser escritas C, 2C, C2, lnC,
Solução Particular - Obtida da geral, mediante condições dadas (chamadas condições iniciais ou condições de contorno).
EQUAÇÕES LINEARES HOMOGÊNEAS, 2ª ORDEM
FORMA : y'' + a1 y' + a0 y = 0 (a0, a1 constantes)
Ex: y = e.gif (338 bytes)
Então y' = lamina.gif (300 bytes)e.gif (338 bytes) e y'' = e.gif (338 bytes)
Substituindo na equação dada: ou e.gif (338 bytes)() = 0
diferente.gif (293 bytes)0 para todo x, logo devemos ter = 0, que é uma equação do segundo grau na variável lamina.gif (300 bytes), chamada EQUAÇÃO CARACTERÍSTICA.
A solução da equação diferencial linear irá depender da raízes lamina.gif (300 bytes)1 e lamina.gif (300 bytes)2.
  • lamina.gif (300 bytes)1, lamina.gif (300 bytes)2 números reais e distintos seta.gif (302 bytes) C1 e C2 são soluções particulares da EDO e a solução geral é y = C1b.gif (352 bytes) + C2c.gif (357 bytes)
  • lamina.gif (300 bytes)1 = lamina.gif (300 bytes)2 = lamina.gif (300 bytes) (números reais e iguais) seta.gif (302 bytes) a solução geral da EDO é y = C1e.gif (338 bytes) + C2xe.gif (338 bytes)
  • lamina.gif (300 bytes)1 = a + bi, lamina.gif (300 bytes)2 = a - bi (complexos conjugados: a, b reais) seta.gif (302 bytes) a solução geral é y = C1b.gif (352 bytes) + C2c.gif (357 bytes)
Ex: y'' - 2y' - 15y = 0
Equação característica: - 2lamina.gif (300 bytes) - 15 = 0 cujas raízes são: lamina.gif (300 bytes)1 = 5, lamina.gif (300 bytes)2= -3
Solução geral: y = d.gif (514 bytes)
EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N
Uma equação diferencial linear de ordem n é da forma:
fn(x)y(n) + fn-1(x) y(n-1) +...+ f2(x) y'' + f1(x)y' + f0(x)y = k(x)
onde k(x) e os coeficientes fi (x) são funções de x.
CLASSIFICAÇÕES:
Equação linear homogênea (k(x) = 0), ou equação linear não-homogênea (k(x) 0).
Equação linear: de coeficientes constantes ( f0, f1, f2, ..., fn constantes)
de coeficientes variáveis (pelo menos um fi variável)
EQUAÇÕES DIFERENCIAIS EXATAS
Se P e Q têm derivadas parciais contínuas, então:
P(x,y)dx + Q(x,y)dy = 0
é uma equação diferencial exata se e somente se
Ex: (3x² - 2y³ + 3)dx + (x³ - 6xy² + 2y)dy = 0
P(x,y) = 3x²y - 2y³ + 3 e Q(x,y) = x³ - 6xy² + 2y
m.gif (633 bytes) e n.gif (640 bytes)
logo Px = Qx e a equação diferencial é exata.
TEOREMA: A equação diferencial linear de primeira ordem y' + P(x)y = Q(x) pode ser transformada em uma equação diferencial de variáveis separáveis multiplicando-se ambos os membros pelo fator integrante f.gif (480 bytes).
Ex: g.gif (549 bytes)
Solução: A equação tem a forma do teorema onde, P(x) = -3x² e Q(x) = x²
Pelo teorema:
Multiplicando todos os termos pelo fator integrante: i.gif (345 bytes)
i.gif (345 bytes) - 3x²y = x²i.gif (345 bytes) ou i.gif (345 bytes) = dx = um terço.gif (335 bytes) + C
A multiplicação por dá a solução:
k.gif (520 bytes)

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de