Pular para o conteúdo principal

Progressão Aritmética (P.A.)

Vamos considerar as seqüências numéricas
a) (2, 4, 6, 8, 10, 12).
Veja que a partir do 2º termo a diferença entre cada termo e o seu antecessor, é constante:
a2 - a1 = 4 - 2= 2; a3 - a2 = 6 - 4 = 2
a5 - a4 = 10 - 8 = 2 a6 - a5 = 12 - 10 = 2
b)
a2 - a1 = ;

a3 - a2 =
a4 - a3 =
a5 - a4 =
Quando observamos que essas diferenças entre cada termo e o seu antecessor, é constante, damos o nome de progressão aritmética (P.A.) À constante damos o nome de razão (r).
Obs.: r =0 P.A. é constante.
r>0P.A. é crescente.
r<0P.A. é decrescente.
De um modo geral temos:
Chama-se de progressão aritmética (P.A.), toda sucessão de números que, a partir do segundo, a diferença entre cada termo e o seu antecessor é constante. Isto é:
Sucessão: (a1, a2, a3, a4, a5, a6, a7, ..., an, ...)
a2 - a1 = a3 - a2 = a4 - a3 = ...= an - an -1 = r
1.1 – FÓRMULA DO TREMO GERAL DE UMA P.A.
Vamos considerar a seqüência (a1, a2, a3, a4, a5, a6, a7, ..., an) de razão r, podemos escrever:
Somando membro a membro essas n - 1 igualdades, obtemos:
a2 + a3+ a4+ an -1 + an = a1+ a2+ a3+ ... an -1+ (n-1).r
Após a simplificação temos a fórmula do termo geral de uma P.A.:
an = a1 + (n - 1)

Prof. Júlio Oliveira
Nota Importante:
Quando procuramos uma P.A. com 3, 4 ou 5 termos, podemos utilizar um recurso bastante útil.

Para 3 termos: (x, x+r, x+2r) ou (x-r, x, x+r)
Para 4 termos: (x, x+r, x+2r, x+3r) ou (x-3y, x-y, x+y, x+3y). Onde y =
Para 5 termos: (x, x+r, x+2r, x+3r, x+4r) ou (x-2r, x-r, x, x+r, x+2r)Prof. Júlio Oliveira

1.2 – INTERPOLAÇÃO ARITMÉTICA
Interpolar ou inserir k meios aritméticos entre dois números a1 e an, significa obter uma P.A. de k+2 termos, cujos os extremos são a1 e an.
Pode-se dizer que todo problema que envolve interpolação se resume em calcularmos a razão da P.A.
Ex.: Veja esta P.A. (1, ..., 10), vamos inserir 8 meios aritméticos, logo a P.A. terá 8+2 termos, onde:
a1 = 1; an = 10 ; k = 8 e n = k + 2 = 10 termos.

an = a1 + (n-1).r r =

a P.A. ficou assim: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

1.3 – SOMA DOS n TERMOS DE UMA P.A.(Sn)
Vamos considerar a P.A.
(a1, a2, a3, ..., an-2, an-1, an) (1).
Agora vamos escrevê-la de uma outra forma:
(an, an-1, an-2, ..., a3, a2, a1) (2).
Vamos representar por Sn a soma de todos os membros de (1) e também por Sn a soma de todos os membros de (2), já que são iguais.
Somando (1) + (2), vem:
Sn = a1 + a2 + a3 + ... + an-2 + an-1 + an
Sn = an + an-1 + an-2 +...+ a3 + a2 + a1
2Sn = (a1 + an) + (a2 + an-1) + (a3 + an-2) ... + (an-1 + a2) + (an + a1)
Observe que cada parênteses representa a soma dos extremos da P.A. , portanto representa a soma de quaisquer termos eqüidistantes dos extremos. Então:
2Sn = (a1 + an) + (a1 + an) + ... +(a1 + an) + (a1 + an)
n - vezes
2Sn = que é a soma dos n termos de uma P.A.
www.coladaweb.com

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de