Pular para o conteúdo principal

Área da Circunferência

Área da Circunferência

Marcelo Rigonatto




Circunferência
Dada uma circunferência qualquer de raio r, sua área (A) será dada por:
A = πr2 → fórmula para o cálculo da área de uma circunferência de raio r.

Vamos fazer alguns exemplos para entender a utilização da fórmula.

Exemplo 1. Determine a área de uma circunferência de raio medindo 20 cm. (Use π = 3,14)

Solução: Temos que
r = 20 cm
π = 3,14
A = ?
A = 3,14∙202
A = 3,14∙400
A = 1256 cm2
Exemplo 2. Calcule a área de uma circunferência de 30 cm de diâmetro. (Use π = 3,14)

Solução: Temos
d = 30 cm → r = d/2 → r = 15 cm
A = ?
A = 3,14∙152
A = 3,14∙225
A = 706,5 cm2

Exemplo 3. Se uma circunferência tem 43,96 cm de comprimento, qual será o tamanho de sua área? (Use π = 3,14)

Solução: Note que não temos a medida do raio da circunferência. Através do comprimento que foi dado, vamos encontrar a medida do raio. A fórmula do comprimento da circunferência é:

C = 2πr
Assim,
43,96 = 2∙3,14∙r
43,96 = 6,28∙r
r = 43,96/6,28
r = 7 cm
Conhecendo o valor do raio podemos calcular a área.
A=3,14∙72
A=3,14∙49
A=153,86 cm2

Exemplo 4. Um fazendeiro possui 628 m de tela para fazer um galinheiro. Existem dois projetos para a realização desse galinheiro: um galinheiro quadrado e um galinheiro circular. O fazendeiro irá optar pelo projeto que possuir a maior área. Qual dos dois projetos é o que irá satisfazer sua vontade? (Use π = 3,14)

Solução: Como o fazendeiro possui 628 m de tela para fazer o galinheiro, o perímetro do quadrado e da circunferência será de 628 m. Vamos então calcular a área de cada uma das figuras, usando a mesma quantidade de tela, e verificar qual dos projetos apresenta a maior área.

Área do quadrado:
Como o perímetro do quadrado é de 628 m, cada lado terá 157 m de comprimento. (628÷4)
Assim,
A = 1572
A = 24649 m2

Área da circunferência:
Sabemos que o comprimento da circunferência também é 628 m, pois temos a mesma quantidade de tela. Precisamos encontrar a medida do raio dessa circunferência.
C=2πr
628 = 2∙3,14∙r
628 = 6,28∙r
r = 628/6,28
r = 100 m

Assim,

A = 3,14∙1002
A = 3,14∙10000
A = 31400 m2

Portanto, o galinheiro que terá a maior área será o de formato circular.

Comentários

Postar um comentário

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de