Pular para o conteúdo principal

Área total do cilindro


Cilindros
O cilindro é um sólido geométrico bastante utilizado na indústria de embalagens e na armazenagem de líquidos em geral. É considerado um corpo redondo por conter uma de suas faces arredondadas. Em razão dessa característica, o cálculo de sua área total requer algumas observações e certo cuidado.

Considere um cilindro circular reto de raio da base r e altura h, como mostra a figura abaixo.
Para compreender como é feito o cálculo de sua área total devemos fazer a planificação do cilindro.
Observe que ao planificar o cilindro obtemos duas circunferências de raio r, relativas às duas bases apresentadas no sólido, e um retângulo de altura h e comprimento 2πr. Podemos concluir que:

área total = área lateral + área da base + área da base

Como as bases do cilindro são circunferências de raio r, temos que:

área da base = π∙r2

A área lateral é dada por:

área lateral = 2∙π∙r∙h

Assim, podemos determinar a área total de um cilindro da seguinte forma:

St = 2∙π∙r∙h + 2∙π∙r2

Colocando 2πr em evidência, obtemos:

St = 2∙π∙r∙(h + r)

Que é a fórmula para o cálculo da área total de um cilindro, onde:

St → é a área total
r → é a medida do raio da base
h → é a altura do cilindro

Observe que para calcular a área total do cilindro basta conhecer a medida do raio e da altura.

Vejamos alguns exemplos de aplicação da fórmula da área total.

Exemplo 1. Determine a área total de um cilindro circular reto de 16 cm de altura e raio da base medindo 5 cm. (Use π = 3,14)

Solução: Pelo enunciado do problema temos os seguintes dados:
h = 16 cm
r = 5 cm
St = ?

Utilizando a fórmula da área total, obtemos:

St=2∙π∙r∙(h+r)
St = 2 ∙ 3,14 ∙ 5 ∙(16 + 5)
St = 2 ∙ 3,14 ∙ 5 ∙ 21
St = 659,4 cm2

Exemplo2. Uma indústria deseja fabricar um barril de óleo com formato cilíndrico cujo raio da base deve apresentar 40 cm de comprimento e sua altura será de 1,2 m. Para fabricação desse barril, a indústria utilizará chapas metálicas. Quantos metros quadrados de chapa serão necessários para fabricar um barril? (Use π = 3,14)

Solução: A resolução desse problema consiste em determinar a área total desse barril, que apresenta o formato de um cilindro. Do enunciado do problema, obtemos:
h = 1,2 m
r = 40 cm = 0,4 m
St = ?

Pela fórmula da área total, temos que:

St = 2∙π∙r∙(h + r)
St = 2 ∙ 3,14 ∙ 0,4 ∙ (1,2 + 0,4)
St = 2 ∙ 3,14 ∙ 0,4 ∙ 1,6
St = 4,02 m2

Portanto, serão gastos, aproximadamente, 4,02 metros quadrados de chapa metálica para confeccionar um barril.

Exemplo 3. Uma lata de extrato de tomate de formato cilíndrico possui área total de 244,92 cm2 de área total. Sabendo que o raio da base da lata mede 3 cm, obtenha a medida da altura dessa embalagem.

Solução: Pelo enunciado do problema, obtemos:
St = 244,92 cm2
h = ?
r = 3 cm

Utilizando a fórmula da área total, temos que:

Portanto, a lata possui uma altura de 10 cm.
fonte: www.alunosonline.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de