cead20136

sábado, 10 de dezembro de 2016

Cálculo do MMC e do MDC

Os cálculos envolvendo MMC e MDC são relacionados com múltiplos e divisores de um número natural. Entendemos por Múltiplo, o produto gerado pela multiplicação entre dois números. Observe:
Dizemos que 30 é múltiplo de 5, pois 5 * 6 = 30. Existe um número natural que multiplicado por 5 resulta em 30. Veja mais alguns números e seus múltiplos:
M(3) = 0, 3, 6, 9, 12, 15, 18, 21, ...
M(4) = 0, 4, 8, 12, 16, 20, 24, 28, 32, ...
M(10) = 0, 10, 20, 30, 40, 50, 60, ...
M(8) = 0, 8, 16, 24, 32, 40, 48, 56, ...
M(20) = 0, 20, 40, 60, 80, 100, 120, ...
M(11) = 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, ...

Os múltiplos de um número formam um conjunto infinito de elementos.

Divisores
Um número é considerado divisível por outro quando o resto da divisão entre eles é igual a zero. Observe alguns números e seus divisores:
D(10) = 1, 2, 5, 10.
D(20) = 1, 2, 4, 5, 10, 20.
D(25) = 1, 5, 25.
D(100) = 1, 2, 4, 5, 10, 20, 25, 50, 100.


Mínimo Múltiplo Comum (MMC)
O mínimo múltiplo comum entre dois números é representado pelo menor valor comum pertencente aos múltiplos dos números. Observe o MMC entre os números 20 e 30:
M(20) = 0, 20, 40, 60, 80, 100, 120, ....
M(30) = 0, 30, 60, 90, 120, 150, 180, ...

O MMC entre 20 e 30 é equivalente a 60.
Outra forma de determinar o MMC entre 20 e 30 é através da fatoração, em que devemos escolher os fatores comuns de maior expoente e os termos não comuns. Observe:
20 = 2 * 2 * 5 = * 5
30 = 2 * 3 * 5 = 2 * 3 * 5
MMC (20; 30) = 2² * 3 * 5 = 60
A terceira opção consiste em realizar a decomposição simultânea dos números, multiplicando os fatores obtidos. Observe:


Máximo Divisor Comum (MDC)

O máximo divisor comum entre dois números é representado pelo maior valor comum pertencente aos divisores dos números. Observe o MDC entre os números 20 e 30:
D(20) = 1, 2, 4, 5, 10, 20.
D(30) = 1, 2, 3, 5, 6, 10, 15, 30.

O maior divisor comum aos números 20 e 30 é correspondente a 10.

Podemos também determinar o MDC entre dois números através da fatoração, onde escolheremos os fatores comuns de menor expoente. Observe o MDC de 20 e 30 utilizando esse método.
20 = 2 * 2 * 5 = 2² * 5
30 = 2 * 3 * 5 = 2 * 3 * 5
MDC (20; 30) = 2 * 5 = 10
Exemplo
Vamos determinar o MMC e o MDC entre os números 80 e 120.
MMC
80 = 2 * 2 * 2 * 2 * 5 = 24 * 5
120 = 2 * 2 * 2 * 3 * 5 = 2³ * 3 * 5
MMC (80; 120) = 24 * 3 * 5 = 240
MDC (80; 120) = 2³ * 5 = 40
Por Marcos Noé

Nenhum comentário:

Postar um comentário