Pular para o conteúdo principal

Função

Pra que uma função seja considerada do 2º grau, ela terá que assumir certas características, como: Toda função do 2º grau deve ser dos reais para os reais, definida pela fórmula f(x) = ax2 + bx + c, sendo que a deve pertencer ao conjunto dos reais menos o zero e que b e c deve pertencer ao conjunto dos reais.
Então, podemos dizer que a definição de função do 2º grau é:
f: R→ R definida por f(x) = ax2 + bx + c, com a R* e b e c R.

Veja alguns exemplos de Função afim:

f(x) = x2 + 2x +1 ; a = 1 , b = 2 , c = 1 (Completa)

f(x) = 2x2 – 2x ; a = 2 , b = - 2 , c = 0 (Incompleta)

f(x) = - x2 ; a = -1 , b = 0 , b = 0 (Incompleta)

Toda função a do 2º grau também terá domínio, imagem e contradomínio.

A função do 2º grau f(x) = x2 + 2x - 1 pode ser representada por
y = x2 + 2x - 1. Para acharmos o seu domínio e contradomínio, devemos em primeiro estipular valores para x.
Vamos dizer que x = -3 ; -2 ; -1 ; 0 ; 1 ; 2. Para cada valor de x teremos um valor em y, veja:

x = - 3 x = - 2
y = (-3)2 + 2 . (-3) – 1 y = ( -2)2 + 2 . (-2) - 1
y = 9 – 6 – 1 y = 4 – 4 – 1
y = 3 – 1 y = -1
y = 2

x = -1 x = 0
y = (-1)2 + 2 . (-1) -1 y = 02 + 2 . 0 – 1
y = 1 - 2 -1 y = -1
y = -1 -1
y = -2

x = 1 x = 2
y = 12 + 2 . 1 – 1 y = 22 + 2 . 2 – 1
y = 1 + 2 – 1 y = 4 + 4 – 1
y = 3 – 1 y = 8 – 1
y = 2 y = 7

Os valores de x são o domínio e a imagem e o contradomínio são os valores de y. Então, podemos dizer que o domínio e o contradomínio são o conjunto dos reais.

Com relação à função f(x) = 3x2 – 5x + m2 – 9, sabe-se que f(0) = 0. Calcule o valor de m.

f(0) = 0, isso significa que x = 0 e y = 0. A função f(x) = 3x2 – 5x + m2 – 9 pode ser escrita assim: y = 3x2 – 5x + m2 – 9, agora basta fazer as substituições:

f(x) = 3x2 – 5x + m2 – 9
0= 3 . 02 – 5 . 0 + m2 – 9
0 = m2 – 9
m2 = 9
m = √9
m = - 3 ou + 3
Professor Antonio Carlos Carneiro Barroso

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de