Pular para o conteúdo principal

Unidades de Medidas de Área

O cálculo de áreas é uma parte da Geometria que possui uma variedade de aplicações no cotidiano. A área pode ser calculada através do produto entre duas dimensões do plano: comprimento x largura ou base x altura. Existem algumas expressões algébricas matemáticas que são associadas a figuras geométricas, possibilitando o cálculo de suas áreas. As unidades usuais de áreas, de acordo com o SI (sistema internacional de unidades), são a seguintes:

km² = quilômetro quadrado
hm² = hectômetro quadrado
dam² = decâmetro quadrado
m² = metro quadrado
dm² = decímetro quadrado
cm² = centímetro quadrado
mm² = milímetro quadrado


O procedimento para o cálculo da área de uma região plana exige que todas as dimensões estejam numa mesma unidade de comprimento, que de acordo com o SI são:

km = quilômetro
hm = hectômetro
dam = decâmetro
m = metro
dm = decímetro
cm = centímetro
mm = milímetro

As unidades de comprimento e de área podem ser transformadas de acordo com as seguintes tabelas de conversões de medidas:

Medidas de comprimento
Transformando 1 metro (m) em milímetros (mm):
1º passo: transformar metro em decímetro
2º passo: transformar decímetro em centímetro
3º passo: transformar centímetro em milímetro
Para ser mais prático, podemos multiplicar o metro por 10x10x10 (1000)

1 x 10 x 10 x 10 = 1000 →1m = 1000mm


Medidas de Área




Transformando 1m² (metro quadrado) em cm² (centímetro quadrado)
1º passo: transformar m² em dm²
2º passo: transformar dm² em cm²

Pelo processo prático podemos multiplicar o m² por 100x100 (10 000)

1 x 100 x 100 = 10 000 → 1m² = 10 000cm²



Exemplo 1
Um muro com as seguintes medidas: 20m de comprimento e 2m de altura foi construído com tijolos de dimensões 20cm de comprimento e 20cm de altura. Quantos tijolos foram gastos na construção desse muro, descartando a hipótese de desperdício?

Área do muro
20m x 2m = 40m²

Área do tijolo
20cm x 20cm = 400cm²

A área do muro e a do tijolo estão em unidades diferentes, para isso devemos utilizar a tabela de conversões no intuito de igualar as medidas. Podemos escolher entre as seguintes transformações:
m² em cm² ou cm² em m²

Vamos transformar m² em cm²:
40 x 100 x 100 = 400 000 cm²

Para descobrir quantos tijolos foram gastos, basta dividirmos a área do muro em cm² pela área de um tijolo:
400 000 cm² : 400 cm² = 1000

Foram gastos 1000 tijolos na construção do muro.


Exemplo 2
Pedro deseja colocar cerâmica na área de lazer de sua casa, que possui 9 m de comprimento por 6 m de largura. Se forem usadas cerâmicas quadradas com lado medindo 100cm, quantas serão gastas?

Área em m²
9m x 6m = 54m²

Área da cerâmica em m²
100cm x 100cm = 10 000 cm²
Transformando cm² em m², temos:
10 000 : 100 : 100 = 1m²

54m² : 1m² = 54
Serão utilizadas 54 cerâmicas na área de lazer da casa de Pedro.
Marcos Noé Pedro da Silva

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de