Pular para o conteúdo principal

Conjuntos

Conjunto é uma reunião de elementos, podemos dizer que essa definição é bem primitiva, mas a partir dessa ideia podemos relacionar outras situações. O conjunto universo e o conjunto vazio são tipos especiais de conjuntos.
Vazio: não possui elementos e pode ser representado por { } ou Ø.
Universo: possui todos os elementos de acordo com o que estamos trabalhando, pode ser representado pela letra maiúscula U.

Representando conjuntos

A representação de um conjunto depende de determinadas condições:

Exemplo 1
Condição: O conjunto dos números pares maiores que zero e menores que quinze.Representação através de seus elementos.
A = {2, 4, 6, 8, 10, 12, 14}

Representação pela propriedade de seus elementos.
A = {x / x é par e 0 < x < 15}, o símbolo da barra (/) significa “tal que”.
x tal que x é par e x maior que zero e x menor que 15.
Exemplo 2
Condição: O conjunto dos números Naturais ímpares menores que vinte.Elementos
A = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

Propriedade dos elementos
A = {x Є N / x é impar e x < 20}
x pertence aos naturais tal que x é impar menor que 20.
Outra forma de representação de conjuntos de elementos é a utilização de diagramas. Observe os conjuntos A e B.
A = {x / 2 < x ≤ 12} e B = {x / 4 < x < 8}

União do conjunto A com o conjunto B. (A U B)

Os conjuntos servem para representar qualquer situação envolvendo ou não elementos. Na Matemática, uma importante aplicação dos conjuntos é na representação de conjuntos numéricos.

Conjunto dos números Naturais
Conjunto dos números Inteiros
Conjunto dos números Racionais
Conjunto dos números Irracionais
Conjunto dos números Reais
Conjunto dos números Complexos
Conjunto dos números Algébricos
Conjunto dos números Transcendentais
Conjunto dos números Imaginários

Os estudos básicos sobre conjuntos deram origem aos estudos relacionados às Teorias dos Conjuntos, que faz uma análise sobre as suas propriedades. Esses estudos se originaram nos trabalhos do matemático russo Georg Cantor. Na teoria dos conjuntos, os elementos podem ser: pessoas, números, outros conjuntos, dados estatísticos e etc.
Marcos Noé

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de