Pular para o conteúdo principal

RELAÇÕES E FUNÇÕES


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com


CONCEITOS DE RELAÇÃO R DE A EM B


Considere os conjuntos;

A = { 1,2,5}
B = { 2,4}

Formemos o produto cartesiano de A por B:

A x B = { (1,2), (1,4), (2,2), (2,4), (5,2) , (5,4) }



Exemplos:

Sejam A = { 1,2,3} e  B = { 5,6}, os subconjuntos de A x B :
R1 = { (1,5),(2,6), ( 3,6)}
R2 = { (2,6), (3,5)}
R3= { (1,6) ,(2,6),(3,5),(3,6)}

são relações de A em B

EXERCÍCIOS


FUNÇÃO

Uma relação de A em B é determinada de função ou aplicação quando associa a todo elemento de A um único elemento em B

Exemplos

São funções de A em B, as relações representadas nos diagramas:





Obeserve:

-Em A, não sobra elementos, em B pode sobrar
- Em A, de cada elemento "parte"uma unica flecha
- Em B, um elemento pode receber mais de uma flecha

Não são funçoes de A em B, as representadas no diagramas:


Exercícios

1) Indique os diagramas que representam uma função de E em F:










DOMÍNIO CONTRADOMÍNIO E CONJUNTO IMAGEM DE UMA FUNÇÃO

Seja f uma função de A em B.



f = { (1,2),(2,4),(3,6)}

O conjunto A é o dominio da função (conjuntode partida)
No exemplo temos:
domínio = { 1,2,3}

O conjunto B é o contradominio da funbção (conjunto de chegada)
No exemplo, temos:
contradominio = { 2,3,4,5,6,7}

A imagem da função é formadapor todos os elementos de B que ficam associados a elemntos de A (elementos de B que rebem flechas )
No exemplo temos :

imagem = { 2,4,6}

O conjunto imagem é um subconjunto do contradomínio.



NOTAÇÃO DE FUNÇÃO

Considere a função f definida de R em R, tal que y = 2x + 1.

Observ e, por exemplo, que:

Para x=3, temos y = 2 . 3+1 = 7

para x=4, temos y = 2 . 4 +1= 9

para x = 5, temos y = 2 . 5 +1 = 11


Dizemos que:

7 é a imagem de 3 pela função f.  [Escreveos f(3) = 7]

9 é a imagem de 4 pela fução f  [escrevemos f(4) = 9]

11 é a imagem de 5 pela função f  [ escrevemos f(5) = 11]

Então:
Em vez de escrever y = 2x + 1, podemos escrever f(x) = 2x + 1

Onde:
x --- reprsenta um elelmento genérico do domínio da função
f(x) ---- representa o valor da função para o x considerado.

Nota:

Para definir uma função, é necessário especificar o seu domínio e o seu contra-dominio. Neste livro estudaremos as funções definidas de R em R


EXERCÍCIOS RESOLVIDOS

1) Dada a função definida por:






2) Dada a função definida por:











EXERCÍCIOS








EXERCÍCIOS COMPLEMENTARES

1) Entre as relações abaixo dadas por diagrama, quais são as funções de G em H







jmpmat24.blogspot.com.br

Comentários

  1. Olá.
    Qual ano se inicia o estudo sobre ambos os assuntos?

    ResponderExcluir
    Respostas
    1. Em geral é no 1 Ano do Ensino Médio. Conforme descrito na BNCC

      Excluir
  2. Oi Pessoal meu nome é David, Faço o curso de Licenciatura em Matemática No IFSP, Alguém Poderia me indicar Planos de aula de matemática antes da BNCC?
    preciso fazer um trabalho de comparativo, se fosse do ensino médio melhor caso seja de qualquer fase do ensino Básico vai ajudar!!

    ResponderExcluir

Postar um comentário

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de