Pular para o conteúdo principal

Função quadratica

Chamamos de função quadrática, a famosa função do segundo grau. Ela é uma função polinomial da forma:
f(x) = ax² + bx + c
Quando igualada a função a zero, o resultado é uma equação quadrática. 
ax² + bx + c = 0
As soluções para a equação são chamadas raízes da equação ou os zeros da função, e são os interceptos do gráfico da função (a parábola) com o eixo x.

Quanto as raizes:
O número das raizes depende do \Delta = b^2 - 4 a c\,  (delta), observe:
  • Se \Delta > 0\, \!, teremos duas raizes distintas.
  • Se  \Delta = 0\, \!, teremos apenas uma raiz (diz-se que a equação tem duas raízes iguais)
  • Se  \Delta < 0\, \!, não teremos raiz 
Agora que você já sabe o delta podemos prosseguir para encontrar nossas raizes. Temos então ax²+bx+c= 0 onde a \ne 0 \,\! , o proximo passo é saber como usar a fórmula de Bhaskara:
Quanto as raizes existe outro meio de acha-las além da formula de bhaskara, por Soma e Produto (x² – Sx + P = 0). Observe:
Soma: - b/a      Produto: c/a

exemplo: x² + 9x + 14 = 0 (resolvendo por soma e produto)
S: -b/a = -9/1 = -9                 P: c/a = 14/1 = 14
Com base nesses valores, devemos determinar quais os dois números em que a soma seja -9 e o produto 14. Observe:

7 e 2 S = 7 + 2 = 9
P = 7 * 2 = 14

–7 e 2
S = –7 + 2 = – 5
P = –7 * 2 = – 14

7 e –2
S = 7 + (–2) = 5
P = 7 * (–2) = –14

–7 e –2
S = –7 + (–2) = –9
P = –7 * (–2) = 14


Veja que o par de números em que a soma resulta em –9 e o produto em 14 é (–2, –7). Portanto as raízes da equação x² + 9x + 14 = 0 possui como resultado o par ordenado, os números –2 e –7.

Quanto ao grafico (Parábola): 

Para podermos construir a nossa parábola devemos saber para onde sua concavidade esta voltada.

  • Se a > 0 sua concavidade é voltada pra cima
  • Se a < 0 sua concavidade é voltada pra baixo
Vertice: O vértice da parábola corresponde ao ponto mais extremo dela. É definido pelas seguintes coordenadas:

(X vertice= -\frac{b}{2a}, Y vertice= -\frac {\Delta}{4a})  
Estudo de sinaisConsideramos uma função quadrática  f(x) = ax2 + bx + c e determinemos os valores de x para os quais y é negativo e os valores de x para os quais y é positivos. Temos que considerar 3 casos, veja:

1º Caso:  \Delta > 0\, \! 
Nesse caso a função quadrática admite duas raizes reais distintos (x1  x2). a parábola intercepta o eixo Ox em dois pontos e o sinal da função é o indicado nos gráficos.

 
quando a > 0
y > 0 (x < x1 ou x > x2)
y < 0 x1 < x < x2

 
quando a < 0
y > 0 x1 < x < x2
y < 0  (x < x1 ou x > x2)

2º Caso: \Delta < 0\,\! 



                                                                 quando a > 0
 
quando a < 0

3º Caso: \Delta = 0\, \! 

quando a > 0
 

 
quando a < 0
 

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de