Pular para o conteúdo principal

Transformações Lineares

  1. Obter a expressão geral da transformação linear T:R³toR² definida de tal modo que T(1,0,0)=(1,0), T(0,1,0)=(1,1) e T(0,0,1)=(1,−1). Depois de obter a forma geral, obtenha o vetor v em R³, tal que T(v)=(1,2).
    Para resolver este problema devemos escrever o vetor v=(x,y,z) como combinação linear dos elementos de C={e1,e2,e3} que é a base canônica de R³, que são e1=(1,0,0), e2=(0,1,0) e e3= (0,0,1). Assim
    (x,y,z) = a(1,0,0)+ b(0,1,0)+ c(0,0,1) = (a,0,0)+(0,b,0)+(0,0,c) = (a,b,c)
    Assim, x=a, y=b e z=c e como T é linear, segue que:
    T(x,y,z) = T[x(1,0,0)+ y(0,1,0)+ z(0,0,1)]
    = T[x(1,0,0)]+T[y(0,1,0)]+T[z(0,0,1)]
    = xT(1,0,0)+yT(0,1,0)+zT(0,0,1)
    = x(1,0)+y(1,1)+z(1,−1)
    = (x+y+z,y−z)
    assim, a forma geral da referida transformação linear é:
    T(x,y,z) = (x+y+z,y−z)
    Para obter o vetor v=(x,y,z) em R³ tal que T(x,y,z)=(1,2), tomaremos a forma T(x,y,z)=(x+y+z,y−z) exigindo que T(x,y,z)=(1,2). Basta resolver o sistema:
    x+y+z = 1
    y − z = 2
    Como o sistema possui três variáveis e duas equações lineares, este sistema terá infinitas soluções. Somando membro a membro as equações acima, obteremos x+2z=3, de onde segue que x=−2y+3. Se escolhermos y=1, obteremos x=1 e z=3 e assim obteremos um vetor em R com a propriedade desejada que é v=(1,1,3).
    Também podemos resolver este problema da seguinte forma:
    Como x=−2y+3 e y=z+2, escrevemos x em função de z para obter x=−2z−1.
    Desse modo, (x,y,z)=(−2z−1,z+2,z). Tomando z=t, podemos escrever as equações paramétricas da reta que tem a direção do vetor v=(−2,1,1) e passa pelo ponto P0= (−1,2,0).
    x(t)=−2t−1,    y(t)=t+2,    z(t)=t
    Poderíamos ainda escrever (x,y,z)=(3−2y,y,y−2).
  2. Obter expressão geral da transformação linear T:R³toR² tal que T(1,0,0)=(1,0), T(1,1,0)=(2,3) e T(1,1,1)=(4,7).
    Para resolver este problema escreveremos o vetor v=(x,y,z) como combinação linear dos elementos da base B={(1,0,0),(1,1,0),(1,1,1)} para obter
    (x,y,z) = a(1,0,0)+ b(1,1,0)+ c(1,1,1) = (a,0,0)+(b,b,0)+(c,c,c) = (a+b+c,b+c,c)
    Assim, x=a+b+c, y=b+c e z=c e desse modo:
    T(x,y,z) = T[x(1,0,0)+ y(1,1,0)+ z(1,1,1)]
    = T[x(1,0,0)]+T[y(1,1,0)]+T[z(1,1,1)]
    = xT(1,0,0)+yT(1,1,0)+zT(1,1,1)
    = x(1,0)+y(2,3)+z(4,7)
    = (x+2y+4z,x+3y+7z)

Referências bibliográficas

  1. Boyer,Carl Boyer. História da Matemática,Editora Edgard Blücher,São Paulo. Pag.424-427. 1974.
  2. Howard Eves. Introdução à História da Matemática. Tradução de Hygino H. Domingues. 3a.ed. Campinas-SP: Editora da UNICAMP. Pag.552-556. 2002.

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de