Pular para o conteúdo principal

Transformações Lineares

1. Se T : V → W é uma transformação linear, mostre que:
(a) Ker(T) é um subespaço de V . (b) Im(T) é um subespaço de W.
Solução:
Agora, somando-se membro a membro estas duas equações vetoriais, vem
fazendo v = λu ∈ V . Isto é, existe v ∈ V tal que λw = T(v), basta tomarmos v = λu ∈ V e, portanto, λw ∈ Im(T). Daí, concluímos que Im(T) é um subespaço vetorial de W.
(a) Determine uma base do núcleo de T. (b) Dê a dimensão da imagem de T. (c) T é sobrejetora? Justifique. (d) Faça um esboço de Ker(T) e Im(T).
Solução:
(c) Não. A imagem não é igual ao contradomínio já que DimIm(T) = 2 e o contradomínio tem dimensão 3.
3. No plano, uma rotação anti-horária de 45◦ é seguida por uma dilatação de √ 2. Ache a aplicação
A que representa esta trasnformação do plano.
Solução:
sinθ cosθ
Que pode ser escrito como uma transformação:
Uma dilatação D de √
2(x,y). Como queremos dilatar a transformação R, teremos
Solução: Escreva
Aplicando T e sabendo que ela é linear, temos:
α1 = α2 == αm = 0.
Solução: (a) Podemos escrever essa transformação na forma:
(b) Para a imagem, teremos
6. Mostrar que a matriz do operador linear indentidade
I : Rn → Rn,I(v) = v em uma base qualquer, é a matriz identidade n × n.
Solução:
T(v1) = 1 · v1 + 0 · v2 +0 · vn
T(v2) = 0 · v1 + 1 · v2 ++ 0 · vn
T(vn) = 0 · v1 + 0 · v2 ++ 1 · vn
Daí, a matriz de transformação será
Solução: Escreva a combinação
a1 · Tu1 + a2 · Tu2 ++ ak · Tuk = 0(= T(0))
T(a1 · u1 + a2 · u2 ++ ak · uk) = T(0).
Como T é linear,
a1 · u1 + a2 · u2 ++ ak · uk = 0.
Como u1,u2,...,uk são vetores LI, teremos a1 = a2 == ak = 0, e portanto {T(u1),...,T(uk)}
Sendo T injetiva, é L.I.
(d) Ache a transformação linear P : R2 → R2 tal que P = S ◦ T
Solução:
ou seja,
(c)
ou seja,
(d)
Solução:
10. Seja T : V → W uma transformação. Mostre que se T é linear, então T(0) = 0.
fonte http://www.ebah.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de