Pular para o conteúdo principal

Ciências da 5ª série

O surgimento do Universo

Existem várias explicações sobre a origem do Universo. Há, sobre esse assunto, as explicações religiosas e as científicas. Trataremos aqui da visão científica, ou seja, de como os cientistas procuram explicar os fenômenos que observam no Universo.  Não se sabe ao certo , mas os cientistas calculam que o Universo tenha começado a existir há cerca de 15 bilhões de anos. Parece impossível afirmar uma coisa dessas -15 bilhões de anos é muito tempo!

O que levou os cientistas a pensarem que o Universo tenha tido um começo?
O telescópio Hubble, consegue captar a luz de estrelas que mostra como elas eram a bilhões de anos. Analisando a luz das estrelas, é possível saber a velocidade com que elas estão se afastando ou se aproximando de nós, sua composição química, idade, temperatura e massa, entre outros aspectos.
Os cientistas então descobriram algo inesperado: as galáxias estão se afastando da Terra!
Para você entender melhor o que está acontecendo, faça várias bolinhas de tinta com uma caneta sobre a borracha de uma bexiga (balão de aniversário) e comece a soprar. Veja o que acontece com a distância entre as marcas de tinta.
A análise da luz das estrelas mostra que as galáxias estão se afastando  uma das outras, assim como as marcas feitas na bexiga. Isso acontece porque o Universo, como a bexiga de nosso exemplo, está se expandindo.
Mas se eles está se expandindo, podemos concluir que, no passado as galáxias estavam mais próximas. Quanto mais voltarmos no tempo, mais próximas elas estavam.
Podemos supor, então um momento em que toda a matéria do Universo estava compactada em um único ponto, infinitamente comprida em temperaturas enormes. Foi então o que aconteceu o que os cietistas chamam de "a grande explosão" ou, em inglês, o big-bang. Era o início do Universo, que teria ocorrido há mais ou menos 15 bilhões de anos.
Depois da explosão, a temperatura inicial, que era de mais de um trilhão de graus Celsius, começou a diminuir, e os átomos como formam a matéria hoje, se originaram, a partir dos prótons, elétrons e outras partículas.
Primeiro, os átomos se agruparam em núvens de gases. Cerca de um bilhão de anos depois, as primeiras estrelas e galáxias surgiram.

E antes do big-bang?
Os cientistas não sabem dizer. Como não havia nem tempo nem espaço antes da grande explosão, alguns acham difícil afirmar que havia alguma coisa anterior. Segundo eles, todo o Universo passou a existir só a partir da grande explosão.
Mas a ciência ainda não tem uma resposta para essa discussão. Como também não tem para o futuro do Universo.
Estrelas


Nebulosa

As estrelas "nascem" a partir de nebulosas constituídas, em grande parte, por gases, poeira e partículas sólidas.
Os cientistas explicam que existe uma atração recíproca entre as partículas de matéria que compõe a grande nuvem - a nebulosa. Essa atração é denominada força de gravidade. Em razão da força de gravidade, a matéria que constitui uma nebulosa se agrupa, compondo uma massa compacta e formando os astros.
Alguns astros alcançam um tamanho gigantesco, e a temperatura no seu interior é elevadíssima. A pressão e o aquecimento se tornam tão intensos no centro desses astros que uma grande quantidade de energia é liberada sob forma de calor e luz. Essa propriedade de produzir o próprio calor e a própria luz é o que diferencia as estrelas dos planetas e de outros astros.
O brilho das estrelas é produzido por parte de sua energia, que se irradia pelo espaço sob a forma de luz. As estrelas não duram para sempre. Elas "nascem", evoluem e "morrem". Esse mesmo processo ocorre com o Sol, pois ele também é uma estrela.


A luz das estrelas
Pode parecer estranho, mas quando olhamos para as estrelas, estamos vendo o passado delas. Se a estrela estiver bem longe, bem longe mesmo, ela pode até nem mais existir da forma como a conhecemos hoje - e inclusive ter se transformado em outro corpo celeste. Quando observamos uma estrela, estamos captando a luz que ela emitiu para o espaço. A luz é uma forma de energia que viaja com a incrível velocidade de cerca de 300 mil quilômetros por segundo. Mas como a distância entre os corpos celestes também é grande, pode levar um bom tempo para que a luz da estrela chegue até nós.
Veja o exemplo:
A estrela mais próxima de nós, depois do Sol, chamada Próxima do Centauro, está a uma distância de 40 trilhões de quilômetros da Terra. Isso quer dizer que a luz dessa estrela leva cerca de 4,2 anos ou 4,2 anos-luz para chegar até aqui. Então quando observamos essa estrela, estamos vendo, nesse momento, a luz que ela emitiu a 4,2 anos. Se, neste momento, essa estrela deixasse de existir ela só "se apagaria", isto é, sua luz deixaria de chegar até nós, daqui a 4,2 anos. Só então perceberíamos que ela deixou de existir.
O brilho das estrelas é ofuscado durante o dia pela luz do Sol que é a estrela mais perto da Terra. Por isso, percebemos as estrelas no céu somente à noite, mas elas permanecem lá durante o dia.

Cor das estrelas
A olho nu, é difícil distinguir a cor das estrelas. Em razão das grandes distâncias que elas estão de nós, a quantidade de luz que chega aos nossos olhos é muito pequena e não percebemos cores quando há pouca luz.
A cor das estrelas depende do calor que chega do núcleo à superfície delas e tem, portanto, relação com a sua temperatura. As estrelas com superfície mais quente apresentam cores branca  ou azulada, e aquelas de cor avermelhada são as que têm a superfície menos quente. Com o telescópio é possível observar a cor das estrelas com mais nitidez.
Nas estrelas menos quentes, a temperatura da superfície chega a 3 000ºC, enquanto nas mais quentes chega a 50 000ºC.
O Sol tem a cor amarelada e, comparado com as outras estrelas, possui uma temperatura média.

Figura ao lado: O azul representa o gás interestelar quente, as estrelas surgem a cor verde e a poeira quente a vermelho. As estrelas super gigantes vermelhas são as estrelas de maior brilho ao centro.




Porque as estrelas piscam?
Olhando para o céu à noite, podemos ver que o brilho das estrelas mudam: elas "piscam". Mas estrelas estão sempre emitindo a mesma luz. O piscar é provocado por mudanças no ar da atmosfera que a luz atravessa.
As constelações

A posição de uma estrela em relação a outra nos parece fixa. No entanto, as estrelas, estão se movendo, geralmente em grande velocidade.

Em razão da imensa distância entre as estrelas e nós, só é possível perceber essa movimentação com o uso de instrumentos apropriados ou no decorrer de séculos.
Por parecer que as estrelas estão fixas no céu, conseguimos imaginar agrupamento delas formando constelações. Nesses agrupamentos, as estrelas parecem, para nós que as observamos da Terra, estar próximas entre si. Na verdade, elas podem estar muito distantes umas das outras, às vezes separadas por dezenas de anos-luz.
Na constelação do Cruzeiro do Sul, por exemplo, para o observador situado na Terra, as estrelas parecem formar uma cruz. Mas, se um observador, localizado em outro ponto do espaço visse essa constelação, provavelmente não conseguiria perceber a figura da cruz.
Durante o ano, percebemos o Cruzeiro do Sul em diferentes posições com relação ao observador terrestre; no entanto sempre mantém a mesma posição com relação às demais constelações. Na realidade, é a Terra - nosso ponto de observação - que está se movimentando.
Os povos de várias civilizações observavam que, na época em que suas terras áridas eram atacadas por pragas de escorpião, um determinado conjunto de estrelas surgia no céu. Na imaginação deles, tratava-se de um grande escorpião celeste. Baseados no surgimento da constelação de Escorpião, os povos mesopotâmicos previam a época da seca.


As constelações serviam de referência para delimitar as estações do ano, distinguir as épocas da seca e de plantio, construir calendários e identificar estrela-guia para as navegações.
Os povos indigenas brasileiros, da mesma forma que outros povos, imaginavam figuras no céu ao olhar para as estrelas. Cada cultura tem as suas próprias constelações.
Oficialmente em 1888 os astrônomos agruparam as estrelas e dividiram o céu em 88 constelações oficiais, com fronteiras precisas. Desta forma, cada direção no céu pertence necessariamente a uma (e apenas uma) delas. Elas foram batizadas, em sua maioria, de acordo com a tradição proveniente da Grécia antiga, e seus nomes oficiais são sempre em latim. As mais conhecidas, por exemplo, são as que compõe o Zodíaco: Áries (carneiro), Taurus (o touro) etc.



As galáxias

Galáxia é um termo que se origina da palavra gala, que significa "leite", em grego. Inicialmente, era a denominação da nossa galáxia, a Via Láctea, e, depois, se generalizou como denominação de todas as demais.
As galáxias são compostas por nuvens de gás e poeira, um grande número de estrelas, planetas, cometas e asteróides e diversos corpos celestes unidos pela ação da força gravitacional.
Numa noite estrelada, podemos ver uma faixa esbranquiçada que corta o céu. Essa "faixa" de astros é apenas uma parte da galáxia onde está localizado o planeta Terra. Os antigos a denominaram Via Láctea, cujo significado em latim é "caminho de leite".
A Via Láctea pertence a um conjunto, ou seja, uma aglomerado de diversas galáxias. O Universo contém mais de 200 bilhões de galáxias de tamanho e formas variadas. Há galáxias de forma elíptica, outras são espirais e muitas são as galáxias irregulares, ou seja, que não tem forma específica.


Representação da galáxia de Andrômeda


Representação da Via Láctea vista de perfil (acima) e vista de cima (abaixo)


Eclipses

Os eclipses são fenômenos que ocorrem devido à posição entre a Lua, a Terra e o Sol. Às vezes, esses astros se alinham, bloqueando parte da luz solar que ilumina a Terra ou a Lua.
Os eclipses podem ser lunares ou solares.


Eclipse Lunar

O eclipse lunar acontece na fase da Lua Cheia. Ocorre quando a Terra fica entre o Sol e a Lua, que passa pela região da sombra da Terra. A Terra, nessa ocasião, bloqueia os raios solares que iluminam a Lua. A sombra da Terra se projeta na Lua, cobrindo-a parcial (eclipse parcial) ou totalmente (eclipse total).





Eclipse solar
Ocorre quando a Lua fica entre o Sol e a Terra, ou seja, na fase de Lua Nova e todos ficam alinhados em uma reta só. Nessa ocasião, a Lua bloqueia os raios solares que iluminam parte da Terra.
O eclipse solar pode ser parcial para algumas regiões. Esse fenômeno ocorre pelo menos duas vezes ao ano; no entanto ocorre raramente num mesmo local da Terra.




A influência da Lua sobre a Terra
A Lua é a principal causa dos fenômenos das marés. A força de atração entre a Terra e a Lua e entre a Terra e o Sol (esta em menor grau) provoca a subida e a descida do nível das águas do mar. A subida é a maré alta ou a preamar. A descida é a maré baixa ou a baixa-mar.
As marés acontecem porque a força gravitacional é maior no lado da Terra que está mais próximo à Lua do que no lado oposto, mais afastado.
Mas a influência da atração gravitacional da Lua e dos planetas sobre o corpo humano pode ser desprezada diante da influência do planeta Terra e até de corpos muito mais leves, porém muito mais próximos.
As Massas de Ar
A massa de ar é um aglomerado de ar em determinadas condições de temperatura umidade e pressão. As massas de ar podem ser quentes ou frias. As quente, em geral, deslocam-se de regiões tropicais e as frias se originam nas regiões polares.
As massas de ar podem ficar estacionadas, em determinado local, por dias e até semanas. Mas quando se movem, provocam alteração no tempo havendo choques entre massas de ar quente e frio: enquanto uma avança, a outra recua.
O encontro entre duas massas de ar de temperaturas diferentes dá origem a uma frente, ou seja, a uma área de transição entre duas massas de ar. A frente pode ser fria ou quente. Uma frente fria ocorre quando uma massa de ar frio encontra e empurra uma massa de ar quente, ocasionando nevoeiro, chuva e queda de temperatura.


E uma frente quente ocorre quando uma massa de ar quente encontra uma massa de ar frio que estava estacionada sobre uma região, provocando aumento da temperatura.



Os Ventos

O ar em movimento se chama vento. Sua direção e velocidade afetam as condições do tempo. Para se prever quando uma massa de ar chegará a uma determinada localidade, é fundamental conhecer a velocidade dos ventos.
O movimento do ar, em relação à superfície da Terra, pode variar desde a calmaria e falta de vento até a formação de furacões que provocam a destruição em razão de ventos a mais de 120 quilômetros por hora.
A velocidade dos ventos é medida com um aparelho denominado anemômetro, que é, basicamente, um tipo de cata-vento, como se pode ver ao lado.
No anemômetro, as pequenas conchas giram quando o vento bate nelas, fazendo toda a peça rodar. Um ponteiro se movimenta em uma escala graduada, em que é registrada a velocidade do vento.

Nos aeroportos, é comum ver instrumentos, como, por exemplo, a biruta, que é muito simples, usada para verificar a direção do vento. Também podemos encontrar birutas na beira de praias, para orientar pescadores, surfistas etc.

Os aeroportos, atualmente têm torres de controle, nas quais as informações sobre velocidade e direção dos ventos obtidas por instrumentos são processadas por computadores, que fornecem dados necessários para o pouso e decolagem.
Agora vamos pensar: Em dias quentes, à beira-mar, algumas horas depois do amanhecer, pode-se sentir uma brisa agradável vinda do mar. Como podemos explicar isso?
O Sol aquece a água do mar e a terra. Mas a terra esquenta mais rápido que o mar. O calor da terra aquece o ar logo acima dela. Esse ar fica mais quente, menos denso e sobe. A pressão atmosférica nessa região se torna menor do que sobre o mar. Por isso, a massa de ar sobre o mar, mais fria, mais densa e com maior pressão, se desloca, ocupando o lugar do ar que subiu. Então esse ar aquece, e o processo se repete.
O movimento horizontal de ar do mar para a terra é chamado brisa marítima e acontece de dia.


De noite ocorre o contrário: a terra esfria mais rápido que o mar, já que a água ganha e perde calor mais lentamente que a terra. O ar sobre o mar está mais aquecido (o mar está liberando o calor acumulado durante o dia) e sobe. Então, o ar frio da terra se desloca para o mar. É a brisa terrestre.
Temperatura do Ar
A temperatura do ar é medida por meio de termômetros. Os boletins meteorológicos costumam indicar as temperaturas máxima e mínima previstas para um determinado período.
O vapor de água presente no ar ajuda a reter calor. Assim verificamos que, em lugares mais secos, há menor retenção de calor na atmosfera e a diferença entre temperatura máxima e mínima é maior. Simplificando, podemos dizer que nesses locais pode fazer muito calor durante o dia, graças ao Sol, mas frio à noite como, por exemplo, nos desertos e na caatinga.


Roupas típicas de habitantes do deserto costumam ser de lã, um ótimo isolante térmico, que protege tanto do frio quanto do calor excessivo. Além disso, as roupas são bem folgadas no corpo, com espaço suficiente para criar o isolamento térmico.

Umidade do Ar
A umidade do ar diz respeito à quantidade de vapor de água presente na atmosfera - o que caracteriza se o ar é seco ou úmido - e varia de um dia para o outro. A alta quantidade de vapor de água na atmosfera favorece a ocorrência de chuvas. Já com a umidade do ar baixa, é difícil chover.
Quando falamos de umidade relativa, comparamos a umidade real, que é verificada por aparelhos como o higrômetro, e o valor teórico, estimado para aquelas condições. A umidade relativa pode variar de 0% (ausência de vapor de água no ar) a 100% (quantidade máxima de vapor de água que o ar pode dissolver, indicando que o ar está saturado).
Em regiões onde a umidade relativa do ar se mantém muito baixa por longos períodos, as chuvas são escassas. Isso caracteriza uma região de clima seco.
A atmosfera com umidade do ar muito alta é um fator que favorece a ocorrência de chuva. Quem mora, por exemplo em Manaus sabe bem disso. Com clima úmido, na capital amazonense o tempo é freqüentemente chuvoso.
Como já vimos, a umidade do ar muito baixa causa clima seco e escassez de chuvas.
De acordo com a OMS (Organização Mundial da Saúde), valores de umidade abaixo de 20% oferecem risco à saúde, sendo recomendável a suspensão de atividades físicas, principalmente das 10 às 15horas. A baixa umidade do ar, entre outros efeitos no nosso organismo pode provocar sangramento nasal, em função do ressecamento das mucosas.
No entanto, também é comum as pessoas não se sentirem bem em dias quentes e em lugares com umidade do ar elevada. Isso acontece porque, com o ar saturado de vapor de água, a evaporação do suor do corpo se torna difícil, inibindo a perda de calor. E nosso corpo se refresca quando o suor que eliminamos evapora, retirando calor da pele.

Nível pluviométrico/ quantidade de chuva
A quantidade de chuva é medida pelo pluviômetro. Nesse aparelho, a chuva é recolhida por um funil no alto de um tambor e medida em um cilindro graduado.
A quantidade de chuva é medida no pluviômetro em milímetros: um milímetro de chuva corresponde a 1 litro de água por metro quadrado. Quando se diz, por exemplo, que ontem o índice pluviométrico, ou da chuva, foi de 5 milímetros na cidade de Porto Alegre, significa que se a água dessa chuva tivesse sido recolhida numa piscina ou em qualquer recipiente fechado, teria se formado uma camada de água com 5 milímetros de altura.
Os meteorologistas dizem que a chuva é leve quando há precipitação de menos de 0,5mm em uma hora; ela é forte quando excede os 4mm.


Pressão atmosférica
A pressão atmosférica está relacionada à umidade do ar. Quanto mais seco estiver o ar, maior será o valor desta pressão.
A diminuição da pressão atmosférica indica aumento da umidade do ar, que, por sua vez, indica a possibilidade de chuva. A pressão atmosférica é medida pelo barômetro.

Estações Meteorológicas
Nas estações meteorológicas são registradas e analisadas as variações das condições atmosféricas por meio de equipamentos dos quais fazem uso, como termômetros, higrômetros, anemômetros, pluviômetros, etc.
Nessas estações trabalham os meteorologistas, profissionais que estudam, entre outras coisas, as condições atmosféricas. Os meteorologistas contam com as informações captadas por satélites meteorológicos e radiossondas.
Os satélites meteorológicos são localizados em vários pontos do espaço, captam imagens da superfície e das camadas atmosféricas da Terra e podem mostrar a formação e o deslocamento das nuvens e das frentes frias ou quentes.

As radiossondas são aparelhos que emitem sinais de rádio. São transportados por balões e sua função é medir a pressão, a umidade, e a temperatura das camadas altas da atmosfera. Há aviões que também coletam e enviam informações sobre as condições do tempo.

Das estações meteorológicas, os técnicos enviam os dados das condições do tempo para os distritos ou institutos meteorológicos a fim de fazer as previsões do tempo para as diversas regiões.
No Brasil há o Inmet - Instituto Nacional de Meteorologia e o Inpe - Instituto Nacional de Pesquisas Espaciais, onde se fazem previsões que exigem maior precisão de dados.
As informações sobre o tempo nas diversas regiões do Brasil, divulgadas pelos noticiários, são obtidas junto a esses institutos ou de outros similares.
A poluição do ar e a nossa saúde

Como já vimos, a camada de ar que fica em contato com a superfície da Terra recebe o nome de troposfera que tem uma espessura entre 8 e 16 km. Devido aos fatores naturais, tais como as erupções vulcânicas, o relevo, a vegetação, os oceanos, os rios e aos fatores humanos como as indústrias, as cidades, a agricultura e o próprio homem, o ar sofre, até uma altura de 3 km, influências nas suas características básicas.
Todas as camadas que constituem nossa atmosfera possuem características próprias e importantes para a proteção da terra. Acima dos 25 km, por exemplo, existe uma concentração de ozônio (O3) que funciona como um filtro, impedindo a passagem de algumas radiações prejudiciais à vida. Os raios ultravioletas que em grandes quantidades poderiam eliminar a vida são, em boa parte, filtrados por esta camada de ozônio. A parcela dos raios ultravioletas que chegam a terra é benéfica tanto para a eliminação de bactérias como na prevenção de doenças. Nosso ar atmosférico não foi sempre assim como é hoje, apresentou variações através dos tempos. Provavelmente o ar que envolvia a Terra, primitivamente, era formado de gás metano (CH4), amônia (NH3), vapor d’água e hidrogênio (H2). Com o aparecimento dos seres vivos, principalmente os vegetais, a atmosfera foi sendo modificada. Atualmente, como já sabemos, o ar é formado de aproximadamente 78% de nitrogênio (N2), 21% de oxigênio, 0,03% de gás carbônico (CO2) e ainda gases nobres e vapor de água. Esta composição apresenta variações de acordo com a altitude.

Fatores que provocam alterações no ar

A alteração na constituição química do ar através dos tempos indica que o ar continua se modificando na medida em que o homem promove alterações no meio ambiente. Até agora esta mistura gasosa e transparente tem permitido a filtragem dos raios solares e a retenção do calor, fundamentais à vida. Pode-se dizer, no entanto, que a vida na Terra depende da conservação e até da melhoria das características atuais do ar.

Os principais fatores que têm contribuído para provocar alterações no ar são:
  • A poluição atmosférica pelas indústrias, que em algumas regiões já tem provocado a diminuição da transparência do ar;
  • o aumento do número de aviões supersônicos que, por voarem em grandes altitudes, alteram a camada de ozônio;
  • os desmatamentos, que diminuindo as áreas verdes causam uma diminuição na produção de oxigênio;
  • as explosões atômicas experimentais, que liberam na atmosfera grande quantidade de gases, de resíduos sólidos e de energia;
  • os automóveis e indústrias, que consomem oxigênio e liberam grandes quantidades de monóxido de carbono (CO) e dióxido de carbono (CO2).
Todos estes fatores, quando associados, colocam em risco o equilíbrio total do planeta, podendo provocar entre outros fenômenos, o chamado efeito estufa, que pode provocar um sério aumento da temperatura da terra, o que levará a graves conseqüências.

O Efeito Estufa
Graças ao efeito estufa, a temperatura da Terra se mantém, em média, em torno de 15ºC, o que é favorável à vida no planeta. Sem esse aquecimento nosso planeta seria muito frio.
O nome estufa tem origem nas estufas de vidro, em que se cultivam certas plantas, e a luz do Sol atravessa o vidro aquecendo o interior do ambiente. Apenas parte do calor consegue atravessar o vidro, saindo da estufa. De modo semelhante ao vidro da estufa, a atmosfera deixa passar raios de Sol que aquecem a Terra. Uma parte desse calor volta e escapa para o espaço, atravessando a atmosfera, enquanto outra parte é absorvida por gases atmosféricos (como o gás carbônico) e volta para a Terra, mantendo-a aquecida.
No entanto desde o surgimento das primeiras indústrias, no século XVIII, tem aumentado a quantidade de gás carbônico liberado para a atmosfera.
A atmosfera fica saturada com esse tipo de gás, que provoca o agravamento do efeito estufa. Cientistas e ambientalistas têm alertado para esse fenômeno que parece ser a principal causa do aquecimento global.
Observe abaixo um esquema do efeito estufa.

  • O gás carbônico e outros gases permitem a passagem da luz do Sol, mas retêm o calor por ele gerado.
  • A queima de combustíveis fosseis e outros processos provocam acúmulo de gás carbônico no ar, aumentando o efeito estufa.
  • Por meio da fotossíntese de plantas e algas, ocorre a remoção de parte do gás carbônico do ar.

A Poluição do Ar



A poluição do ar é definida como sendo a degradação da qualidade do ar como resultado de atividades diretas ou indiretas que:
  • Prejudiquem a saúde, a segurança e o bem-estar da população;
  • criem condições adversas às atividades sociais e econômicas;
  • afetem desfavoravelmente a biota (organismos vivos);
  • afetem as condições estéticas ou sanitárias do meio ambiente;
  • lancem matérias ou energia em desacordo com os padrões ambientais estabelecidos em leis federais [Lei Federal no 6938, de 31 de agosto de 1981, regulamentada pelo decreto no 88 351/83].

Poluição e sua fonte

Para facilitar o estudo do assunto, identificamos quatro tipos principais de poluição do ar, segundo as fontes poluidoras.
Poluição de origem natural: resultante de processos naturais como poeiras, nevoeiros marinhos, poeiras de origem extraterrestre, cinzas provenientes de queimadas de campos, gases vulcânicos, pólen vegetal, odores ligados à putrefação ou fermentação natural, entre outros.
Poluição relacionada aos transportes: resultante da ação de veículos automotores e aviões. Devido a combustão da gasolina, óleo diesel, álcool etc., os veículos automotores eliminam gases como o monóxido de carbono, óxido de enxofre, gases sulfurosos, produtos à base de chumbo, cloro, bromo e fósforo, além de diversos hidrocarbonetos não queimados. Variando de acordo com o tipo de motor, os aviões eliminam para a atmosfera: cobre, dióxido de carbono, monoaldeídos, benzeno etc.
Poluição pela combustão: resultante de fontes de aquecimento domésticos e de incinerações, cujos agentes poluentes são: dióxido de carbono, monóxido de carbono, aldeídos, hidrocarbonetos não queimados, compostos de enxofre. O anidrido sulfuroso, por exemplo, pode transformar-se em anidrido sulfúrico, e este, em ácido sulfúrico, que precipita juntamente com as águas das chuvas.
Poluição devida às indústrias: resultante dos resíduos de siderúrgicas, fábricas de cimento e de coque, indústrias químicas, usinas de gás e fundição de metais ferrosos. Entre esses resíduos encontram-se substâncias tóxicas e irritantes, poluentes fotoquímicos, poeiras etc. Além da poeira de natureza química, com grãos de tamanho dos mais diferentes, os principais poluentes industriais encontram-se no estado gasoso, sendo que os mais freqüentes são: dióxido de carbono, monóxido de carbono, óxido de nitrogênio, compostos fluorados, anidrido sulfuroso, fenóis e álcoois de odores desagradáveis.
Inversão térmica
Um fenômeno interessante na atmosfera é o da inversão térmica, ocasião na qual a ação dos poluentes do ar pode ser bastante agravada. A coisa funciona assim: normalmente, o ar próximo à superfície do solo está em constante movimento vertical, devido ao processo convectivo (correntes de convecção). A radiação solar aquece a superfície do solo e este, por sua vez, aquece o ar que o banha; este ar quente é menos denso que o ar frio, desse modo, o ar quente sobe (movimento vertical ascendente) e o ar frio, mais denso, desce (movimento vertical descendente).

Este ar frio que toca a superfície do solo, recebendo calor dele, esquenta, fica menos denso, sobe, dando lugar a um novo movimento descendente de ar frio.
E o ciclo se repete. O normal, portanto, é que se tenha ar quente numa camada próxima ao solo, ar frio numa camada logo acima desta e ar ainda mais frio em camadas mais altas porém, em constantes trocas por correntes de convecção. Esta situação normal do ar colabora com a dispersão da poluição local.
Na inversão térmica, condições desfavoráveis podem, entretanto, provocar uma alteração na disposição das camadas na atmosfera. Geralmente no inverno, pode ocorrer um rápido resfriamento do solo ou um rápido aquecimento das camadas atmosféricas superiores. Quando isso ocorre, o ar quente ficando por cima da camada de ar frio, passa a funcionar como um bloqueio, não permitindo os movimentos verticais de convecção: o ar frio próximo ao solo não sobe porque é o mais denso e o ar quente que lhe está por cima não desce, porque é o menos denso. Acontecendo isso, as fumaças e os gases produzidos pelas chaminés e pelos veículos não se dispersam pelas correntes verticais. Os rolos de fumaça das chaminés assumem posição horizontal, ficando nas proximidades do solo. A cidade fica envolta numa “neblina” e conseqüentemente a concentração de substâncias tóxicas aumenta muito.
O fenômeno é comum no inverno de cidades como Nova Iorque, São Paulo e Tóquio, agravado pela elevada concentração de poluentes tóxicos diariamente despejados na atmosfera.

Estados físicos da matéria
Quando nos referimos à água, a idéia que nos vem de imediato à mente é a de um líquido fresco e incolor. Quando nos referimos ao ferro, imaginamos um sólido duro. Já o ar nos remete à idéia de matéria no estado gasoso.
Toda matéria que existe na natureza, se apresenta em uma dessas formas - líquida, sólida ou gasosa. É o que chamamos de estados físicos da matéria.



No estado sólido, as moléculas de água estão bem "presas" umas às outras e se movem muito pouco: elas ficam "balançando", vibrando, mas sem se afastarem muito umas das outras. Não é fácil variar a forma e o volume de um objeto sólido, como a madeira de uma porta ou o plástico de que é feito uma caneta, por exemplo.


O estado líquido é intermediário entre o sólido e o gasoso, as moléculas estão mais soltas e se movimentam mais que no estado sólido. Os corpos no estado líquido não mantém uma forma definida, mas adotam a forma do recipiente que os contém, pois as moléculas deslizam umas sobre as outras. Na superfície plana e horizontal, a matéria quando em estado líquido também se mantém na forma plana e horizontal.
No estado gasoso, a matéria está muito expandida e, muitas vezes, não podemos percebê-la visualmente. Os corpos no estado gasoso não possuem volume nem forma próprios e também adotam a forma do recipiente que os contém. No estado gasoso, as moléculas se movem mais livremente que no estado líquido, estão muito mais distantes uma das outras que no estado sólido ou líquido e se movimentam em todas as direções. Frequentemente há colisões entre elas, que se chocam também com a parede do recipiente em que estão. É como se fossem abelhas presas em uma caixa e voando em todas as direções.




Resumindo: No estado sólido as moléculas de água vibram em posições fixas. No estado líquido, as moléculas vibram em posições fixas. No estado líquido, as moléculas vibram fortemente: quando acontece mudança na posição inicial, as moléculas deslizam umas sobre as outras. No estado gasoso (vapor), as moléculas se movimentam mais intensamente de forma desordenada.

Propriedades da água

A água é um solvente
No ambiente é muito difícil encontrar água pura, em razão da facilidade com que as outras substâncias se misturam a ela. Mesmo a água da chuva, por exemplo, ao cair, traz impurezas do ar nela dissolvidas.
Uma das importantes propriedades da água é a capacidade de dissolver outras substâncias. A água é considerada solvente universal, porque é muito abundante na Terra e é capaz de dissolver grande parte das substancias conhecidas.
Se percebermos na água cor, cheiro ou sabor, isso se deve a substâncias (líquidos, sólidos ou gases) nela presentes, dissolvidas ou não.
As substâncias que se dissolvem em outras (por exemplo: o sal) recebem a denominação de soluto. A substância que é capaz de dissolver outras, como a água, é chamada de solvente. A associação do soluto com o solvente é uma solução.

A propriedade que a água tem de atuar como solvente é fundamental para a vida. No sangue, por exemplo, várias substâncias - como sais minerais, vitaminas, açucares, entre outras - são transportadas dissolvidas na água.



Porcentagem de água em alguns órgãos do corpo humano.

Nas plantas, os sais minerais dissolvidos na água são levados das raízes às folhas, assim como o alimento da planta (açúcar) também é transportado dissolvido em água para todas as partes desse organismo.
No interior dos organismos vivos, ocorrem inúmeras reações químicas indispensáveis a vida, como as que acontecem na digestão. A maioria dessas reações químicas no organismo só acontece se as substâncias químicas estiverem dissolvidas em água.

A água como regulador térmico
A água tem a capacidade de absorver e conservar calor. Durante o dia, a água absorve parte do calor do Sol e o conserva até a noite. Quando o Sol está iluminando o outro lado do planeta, essa água já começa a devolver o calor absorvido ao ambiente.
Ela funciona, assim, como reguladora térmica. Por isso, em cidades próximas ao litoral, é pequena a diferença entre a temperatura durante o dia e à noite. Já em cidades distantes do litoral, essa diferença de temperatura é bem maior.
É essa propriedade da água que torna a sudorese (eliminação do suor) um mecanismo importante na manutenção da temperatura corporal de alguns animais.

Quando o dia está muito quente, suamos mais. Pela evaporação do suor eliminado, liberamos o calor excedente no corpo. Isso também ocorre quando corremos, dançamos ou praticamos outros exercícios físicos.

Propriedades da água

Flutuar ou afundar?
Você já se perguntou por que alguns objetos afundam na água? Porque um prego afunda e um navio flutua na água? O que faz com que a água sustente alguns objetos, de forma que eles consigam flutuar nela?

Entender porque alguns objetos afundam na água enquanto outros flutuam é muito importante na construção de navios, submarinos etc. Se na água um prego afunda e um navio flutua, está claro que isso não tem nada a ver com o fato de o objeto ser leve ou pesado, já que um prego tem algumas gramas e um navio pesa toneladas.
Na água podemos erguer uma pessoa fazendo pouco esforço, enquanto fora da água não conseguiríamos nem movê-la do chão. Isso acontece porque a água empurra o corpo de uma pessoa para cima. A força que a água exerce nos corpos mergulhados de baixo para cima (como um "empurrão"), é denominada empuxo.
A quantidade de água deslocada pelos corpos é um importante fator para a flutuação ou afundamento dos objetos. O prego, por ter pouco volume, desloca um mínimo de água quando mergulhado. Já o navio por ser muito volumoso, desloca uma grande quantidade de água. Então seu "peso" fica equilibrado pela força com que a água o "empurra", ou seja, pelo empuxo.

Quando o empuxo (E) é igual ao peso (P) o objeto flutua, porém quando o peso é maior que o empuxo o objeto afunda. O submarino quando quer afundar aumenta seu peso enchendo seus tanques de água do mar.

A água exerce pressão
Você já tentou segurar com o dedo o jato de água que sai de uma mangueira? O que aconteceu? A água impedida pelo dedo de fluir, exerce pressão e sai com mais força.
Todos os líquidos em geral exercem pressões. Uma maneira de demonstrar a pressão exercida por uma coluna de "líquido" é efetuar orifícios numa garrafa plástica de 2 litros (destas de refrigerante) e enchê-la de água.
  • A experiência ilustrada abaixo indica que a pressão exercida por um líquido aumenta com a profundidade, pois a vazão do primeiro furo é menor que a vazão dos outros dois. Pode-se verificar que quanto maior a profundidade ou altura de líquido, o filete de água atinge uma maior distância. Diz-se que a pressão é maior e depende da profundidade do orifício considerado.


Pressão e mergulho
Quando uma pessoa mergulha, pode sentir dor na parte interna da orelha. Você sabe por que isso acontece? Novamente, a explicação está relacionada à pressão que a água exerce.
Quando mergulhamos, à medida que nos deslocamos para o fundo, aumenta a altura da coluna líquida acima de nós. Quanto maior a altura dessa coluna, maior será a pressão exercida pelo líquido sobre nós. Por essa razão, nas profundezas dos oceanos a pressão da água é grande e o homem não consegue chegar até lá sem equipamentos de proteção contra a pressão.

Usinas Hidrelétricas
Os engenheiros levam em consideração esse comportamento da água quando planejam as usinas hidrelétricas.
Essas usinas aproveitam o potencial hidráulico existente num rio, utilizando desníveis naturais como quedas de água, ou artificiais, produzidos pelo desvio do curso original do rio.
Nelas, a força das águas represadas dos rios é utilizada para a produção de energia elétrica. Essas usinas são responsáveis por mais de 70% de toda a energia elétrica gerada no país e cerca de 20% da eletricidade mundial. Alem disso não é poluente, é renovável, e permite controlar a vazão dos rios através das barragens, minimizando os efeitos das enchentes.

Você sabe como funciona uma hidrelétrica?
Inicialmente represa-se uma grande quantidade de água em um imenso tanque, cuja base é bem mais larga que a parte de cima. As usinas são construídas abaixo do nível das represas, já que, quanto maior for a profundidade, maior será a pressão exercida pela água. Quando as comportas são abertas, a água sai sob grande pressão. Sob as comportas são colocadas as turbinas, grandes máquinas cuja parte principal é uma roda imensa. A queda da água faz com que as rodas girem, esse movimento gera energia elétrica que é distribuída para as cidades.

Quais são as desvantagens da construção de uma usina hidrelétrica?

As desvantagens da construção de uma usina hidrelétrica são:

- Desapropriação de terras produtivas pela inundação;
- impactos ambientais (fauna e flora) - perda de vegetação e da fauna terrestres;
- impactos sociais (realocação e desapropriação de moradores);
- interferência na migração dos peixes;
- alterações na fauna do rio; e
- perdas de heranças históricas e culturais, alterações em atividades econômicas e usos tradicionais da terra.

Quais são os impactos ambientais na construção de uma usina?
Para construir represas e usinas é preciso alagar uma área enorme para formar o lago, e muitas vezes mexer no caminho que o rio faz. O lago, também chamado de reservatório, é formado pelo represamento das águas do rio, através da construção de uma barragem. Essa alteração do meio ambiente atrapalha a vida dos bichos e das plantas da região, além de mudar radicalmente a paisagem, muitas vezes destruindo belezas naturais. Também saem prejudicadas as pessoas que moram por perto e têm que se mudar por causa da inundação.


Usina Hidroelétrica de Itaipu


Propriedades da água


Tensão superficial

Uma outra característica da água no estado líquido é a tensão que ela representa em sua superfície. Isso acontece porque as moléculas da água se atraem, mantendo-se coesas (juntas), como se formassem uma finíssima membrana da superfície. Olhe a figura abaixo.





O princípio de Pascal
Pascal foi um cientista frânces que viveu de 1623 a 1662. Entre muitas colaborações para a ciência, formulou o seguinte princípio: "A pressão exercida sobre um líquido é transmitida integralmente para todos os pontos do líquido". Observe a figura a baixo:

Quando empurramos fortemente uma rolha para dentro de uma garrafa que contém líquido, essa pressão é transmitida integralmente ao líquido existente no recipiente. A pressão da água dentro da garrafa aumenta e empurra a outra rolha para fora.

O ciclo da água
A água no estado líquido ocupa os oceanos, lagos, rios, açudes etc. De modo contínuo e lentamente, à temperatura ambiente, acontece a evaporação, isto é, a água passa do estado líquido para o gasoso.
Quanto maior for a superfície de exposição da água (por exemplo, um oceano ou nas folhas de árvores de uma floresta), maior será o nível de evaporação. Quando o vapor de água entra em contato com as camadas mais frias da atmosfera, a água volta ao estado líquido, isto é, gotículas de água ou até minúsculos cristais de gelo se concentram formando nuvens.

O vapor de água, quando resfriado, pode também formar a neblina (nevoeiro), ou seja, aquela "nuvem" que se forma perto do solo.


Ao se formar nas nuvens um acúmulo de água muito grande, as gotas tornam-se cada vez maiores, e a água se precipita, isto é, começa a chover. Em regiões muito frias da atmosfera, a água passa do estado gasoso para o estado líquido e, rapidamente, para o sólido, formando a neve ou os granizos (pedacinhos de gelo).
A água da chuva e da neve derretida se infiltra no solo, formando ou renovando os lençóis freáticos. As águas subterrâneas emergem para a superfície da terra, formando as nascentes dos rios. Assim o nível de água dos lagos, açudes, rios etc. é mantido.
A água do solo é absorvida pelas raízes das plantas. Por meio da transpiração, as plantas eliminam água no estado de vapor para o ambiente, principalmente pelas folhas. E na cadeia alimentar, as plantas, pelos frutos, raízes, sementes e folhas, transferem água para os seus consumidores.
Além do que é ingerido pela alimentação, os animais obtêm água bebendo-a diretamente. Devolvem a água para o ambiente pela transpiração, pela respiração e pela eliminação de urina e fezes. Essa água evapora e retorna à atmosfera. No nosso planeta, o ciclo de água é permanente.

Ciclo da água

A qualidade da água

A vida humana, assim como a de todos os seres vivos depende da água.
Mas a nossa dependência da água vai além das necessidades biológicas: precisamos dela para limpar as nossas casas, lavar as nossas roupas e o nosso corpo. E mais: para limpar máquinas e equipamentos, irrigar plantações, dissolver produtos químicos, criar novas substâncias, gerar energia.
É aí que está o perigo: a atividade humana muitas vezes comprometa a qualidade da água. Casas e indústrias podem despejar em rios e mares substâncias que prejudicam a nossa saúde. Por isso, escolher bem a água que bebemos e proteger rios, lagos e mares são cuidados essenciais à vida no planeta.
Água potável
A água potável é aquela popularmente chamada água pura. Para ser bebida por nós, a água deve ser incolor, insípida (sem sabor) e inodora (sem cheiro). Ela deve estar livre de materiais tóxicos e microorganismos, como bactérias, protozoários etc., que são prejudiciais, mas deve conter sais minerais em quantidade necessária à nossa saúde.
A água potável é encontrada em pequena quantidade no nosso planeta e não está disponível infinitamente. Por ser um recurso limitado, o seu consumo deve ser planejado.

Água destilada
A água potável deve ter certa quantidade de alguns sais minerais dissolvidos, que são importantes para a nossa saúde. A água sem qualquer outra substância dissolvida é chamada de água destilada. Veja como se consegue água destilada.
Para retirar sais minerais e outros produtos dissolvidos na água, utiliza-se um processo chamado destilação. O produto dessa destilação, a água destilada, é usado em baterias de carros e na fabricação de remédios e outros produtos. Não serve para beber, já que não possui os sais minerais necessários ao nosso organismo.
Veja como funciona o aparelho que produz água destilada, o destilador:


Observe que a água ferve (1) com ajuda do (2) Bico de Bunsen (chama que aquece a água), transformando-se em vapor (3), e depois se condensa (4), voltando ao estado líquido. Os sais minerais não vaporizam, mas ficam dentro do vidro onde a água foi fervida (chamado balão de destilação).

Água mineral
A água do mar é salgada porque tem muito cloreto de sódio, que é o sal comum usado na cozinha. Justamente por ter tanto sal, não é potável. Se bebermos água do mar, o excesso de sal nos fará eliminar mais água na urina do que deveríamos, e começamos então a ficar desidratados.

Já a água doce, dos rios, lagos e fontes, tem menos sal que a água do mar e pode ser bebida - desde que esteja sem micróbios e produtos tóxicos ou que tenha sido tratada para eliminar essas impurezas.
A chamada água mineral é água que brota de fontes do subsolo. Ela costuma ter alguns sais minerais em quantidade um pouco maior que a água utilizada nas residências e, às vezes outros sais.
A água mineral é, em geral potável e pode ser bebida na fonte ou engarrafada - desde que a fonte esteja preservada da poluição e da contaminação ambiental e que o processo de engarrafamento seja feito com higiene.

Fontes de poluição da água
A água pode conter barro, areia e outras impurezas. Um grande perigo de contaminação da água está, por exemplo, na presença de produtos químicos tóxicos ou microorganismos que tornam a água poluída.
Há varias fontes de poluição, como veremos a seguir.

A conseqüência da falta de tratamento de esgoto
O grande número de dejetos dos populosos núcleos residenciais, descarregado em córregos, rios e mares provoca a poluição e a contaminação das águas. Febre tifóide, hepatite, cólera e muitas verminoses são doenças transmitidas por essas águas.
Há rios como o Tietê e o Guaíba - em cujas margens surgiram a cidade de São Paulo e Porto Alegre - que já estão comprometidos. Além desses, há vários rios expostos à degradação ambiental.


Tietê em obras em São Paulo para retirada de lixo depositado.

A mineração, a extração e o transporte de petróleo
Atividades econômicas importantes têm causado inúmeros acidentes ecológicos graves. O petróleo extraído dos mares e os metais ditos pesados usados na mineração (por exemplo, o mercúrio, no Pantanal), lançados na água por acidente, ou negligência, têm provocado a poluição das águas com prejuízos ambientais, muitas vezes irreversíveis.


Derramamento de petróleo ocorrido na Baía de Guanabara, Rio de Janeiro, Jun. 2000

A poluição causada pelas indústrias
Mesmo havendo leis que proíbam, muitas indústrias, continuam a lançar resíduos tóxicos em grande quantidade nos rios.
Na superfície da água, é comum formar-se uma pequena espuma ácida, que, dependendo da fonte de poluição, pode ser composta principalmente de chumbo e mercúrio. Essa espuma pode causar a mortandade da flora e da fauna desses rios. E esses agentes poluidores contaminam também o organismo de quem consome peixes ou quaisquer outros produtos dessas águas.


Acidente no rio dos Sinos onde milhares de peixes morreram pela contaminação do rio com dejetos químicos lançados pelas empresas, Rio Grande do Sul, outubro, 2006.

As estações de tratamento da água
Muitas casas das grandes cidades recebem água encanada, vinda de rios ou represas. Essa água é submetida a tratamentos especiais para eliminar as impurezas e os micróbios que prejudicam a saúde.
Primeiramente, a água do rio ou da represa é levada através de canos grossos, chamados adutoras, para estações de tratamento de água. Depois de purificada, a água é levada para grandes reservatórios e daí é distribuída para as casas.



Na estação de tratamento, a água passa por tanques de cimento e recebe produtos como o sulfato de alumínio e o hidróxido de cálcio (cal hidratada). Essas substâncias fazem as partículas finas de areia e  de argila presentes na água se juntarem, formando partículas maiores, os flocos. Esse processo é chamado floculação. Como essas partículas são maiores e mais pesadas, elas vão se depositando aos poucos no fundo de outro tanque, o tanque de decantação. Desse modo, algumas impurezas sólidas da água ficam retidas.
Após algumas horas no tanque de decantação, a água que fica por cima das impurezas, e que está mais limpa, passa por um filtro formado por várias camadas de pequenas pedras (cascalho) e areias. À medida que a água vai passando pelo filtro, as partículas de areia ou de argila que não se depositaram vão ficando presas nos espaços entre os grãos de areia. Parte dos micróbios também fica presa nos filtros. É a etapa conhecida como filtração.
Mas nem todos os micróbios que podem causar doenças se depositam no fundo do tanque ou são retidos pelo filtro. Por isso, a água recebe produtos contendo o elemento cloro, que mata os micróbios (cloração), e o flúor, um mineral importante para a formação dos dentes.
A água é então levada através de encanamentos subterrâneos para as casas ou os edifícios.
Mesmo quem recebe água da estação de tratamento deve filtrá-la para o consumo. Isso porque pode haver contaminação nas caixas d'água dos edifícios ou das casas ou infiltrações nos canos. As caixas-d'água devem ficar sempre bem tampadas e ser limpas pelo menos a cada seis meses. Além disso, em certas épocas, quando o risco de doenças transmitidas pela água aumenta, é necessário tomar cuidados adicionais.

O mar pode "morrer"?
Na Ásia, há o famoso mar Morto, que é um exemplo de que um mar pode "morrer". O mar "morre" e os lagos também quando o nível de salinidade, isto é, a concentração de sais da sua água, é tão alto que não permite que os peixes, a flora e outros seres vivam nele. Esse fenômeno ocorre por vários fatores, entre eles: pouca chuva aliada à evaporação intensa (clima quente e seco) e corte ou diminuição do regime de escoamento de rios.


Açude no Acre secando.
Quando não há estação de tratamento
Nos locais em que não há estações de tratamento, a água é obtida diretamente de rios, lagos, nascentes, represas ou poços. Mas, nesses casos, a água pode estar contaminada por micróbios e poluentes e são necessários alguns cuidados.



O poço mais comum é o poço raso, que obtém água a 20 metros de profundidade, no máximo. Ele deve ser construído longe das fontes de poluição e contaminação, ficando, por exemplo, a pelo menos 25 metros da fossa onde as fezes e os resíduos da casa são despejados. Deve ter uma tampa impermeável (uma laje de concreto armado) e uma abertura a pelo menos 20 centímetros acima do solo, para protegê-lo contra a entrada de águas que escorrem pela superfície do solo.
É preciso também que os primeiros três metros do poço sejam impermeáveis à água da chuva que cai na superfície do terreno. A água que se infiltra a mais de três metros e que entra no poço já sofreu um processo natural de filtração ao atravessar o solo.
É importante garantir que a água do poço ou de outras fontes não esteja contaminada por micróbios. O ideal é que ela seja analisada periodicamente por um laboratório, para verificar seu estado de pureza. Se isso não for possível, a água que se bebe, bem como a que é usada para lavar pratos e talheres, deve ser filtrada e tratada. A água deve ser fervida por pelos menos 15 minutos ou tratada com cloro (siga bem a instruções do fabricante, pois cloro em excesso pode causar envenenamento). Antes de tratar a água com cloro, porém, devemos filtrá-la, já que os ovos de vermes, por exemplo, não são destruídos pelo cloro, mas podem ser removidos pela filtração.


Existem também poços artesianos, construídos com equipamento especial, que furam a terra e tiram a água de lençóis subterrâneos mais profundos. Esses lençóis estão situados em espaços existentes entre rochas pouco permeáveis, geralmente a mais de 100 metros de profundidade. A água dos poços artesianos costuma estar limpa, mas deve-se também mandar analisá-la em laboratório.

O destino da água utilizada
Para onde vai a água depois de utilizada em lavagens de roupas, banho, ou descarga de banheiros e outras atividades de uso doméstico?
O destino da água que foi utilizada é um grande problema de saneamento básico e que não está bem solucionado em muitas regiões do Brasil.
Em pequenas comunidades, esse problema relativo ao tratamento da água utilizada pode ser resolvido ou minimizado com fossas sépticas e sumidouro.
Nas regiões mais populosas, entretanto, exige-se uma solução mais complexa. Isso ocorre porque, mesmo para um pequeno prédio com dez apartamentos, a fossa séptica e o sumidouro, em geral, não são suficientes para absorver a água consumida por esses moradores. Imagine, então, uma grande cidade repleta de arranha-céus.
Nesses casos, utilizam-se redes de esgoto.

O Tratamento de Esgoto
Ao chegar à estação de tratamento, o esgoto passa por grades de metal que separam objetos (como plástico, latas, tecidos, papéis, vidros etc.) da matéria orgânica, da areia e de outros tipos de partículas.
O esgoto passa, lentamente, por grandes tanques, a fim de que a areia e as outras partículas se depositem.
O lodo com a matéria orgânica pode seguir para um equipamento chamado biodigestor, onde sofre ação decompositora das bactérias. Nesse processo, há desprendimento de gases, entre eles o metano, que pode ser utilizado como combustível.
A parte líquida, que ficou acima do lodo, também é atacada por bactérias, pois ainda apresenta matéria orgânica dissolvida, essa parte é agitada por grandes hélices, que garantem a oxigenação da água. Também podem ser utilizados para essa oxigenação bombas de ar ou mesmo certos tipos de algas, que produzirão o oxigênio na fotossíntese.

Só depois desse tratamento, o esgoto pode ser lançado em rios, lagos ou mares.
A água já utilizada, após o tratamento retorna ao meio ambiente com seu efeito poluente diminuído. Caso contrário, pode causar grave contaminação da água e, assim, riscos à população que dela se utiliza.
A falta de tratamento de esgoto pode provocar a contaminação do solo e da água, contribuindo para a proliferação de várias doenças. Muitas dessas doenças podem levar a morte muitas crianças, principalmente no seu primeiro ano de vida. Assim, garantir o tratamento de esgoto em todo o Brasil é uma meta a ser alcançada na busca de saúde e qualidade de vida da população.
Doenças transmitidas pela água
A falta de água potável e de esgoto tratado facilita a transmissão de doenças que, calcula-se, provocam cerca de 30 mil mortes diariamente no mundo. A maioria delas acontece entre crianças, principalmente as de classes mais pobres, que morrem desidratadas, vítimas de diarréia causadas por micróbios. No Brasil, infelizmente mais de 3 milhões de famílias não recebem água tratada e um número de casas duas vezes e meia maior que esse não tem esgoto. Isso é muito grave.
Estima-se que o acesso à água limpa e ao esgoto reduziria em pelo menos um quinto a mortalidade infantil.
Para evitar doenças transmitidas pela água devemos tomar os seguintes cuidados:
  • Proteger açudes e poços utilizados para o abastecimento;
  • tratar a água eliminando micróbios e impurezas nocivas a saúde humana;
  • filtrar e ferver a água;
  • não lavar alimentos que serão consumidos crus com água não tratada como verduras, frutas e hortaliças.
As principais doenças transmitidas pela água são:
Diarréia infecciosa
Se a pessoa vai muitas vezes ao banheiro e as fezes saem líquidas ou muito moles, ela pode estar com diarréia. A diarréia pode ser provocada por micróbios adquiridos pela comida ou água contaminadas.
As diarréias leves quase sempre acabam sozinhas. No entanto, é preciso beber líquidos para evitar a desidratação, que é muito perigosa.
Uma criança com diarréia precisa continuar a ser amamentada ou continuar com a alimentação. Às crianças que já comem alimentos sólidos devem ser oferecidas misturas bem amassadas de cereais e feijão ou carne bem cozidos, por exemplo. Depois de a diarréia passar, é bom dar a ela uma alimentação extra, para ajudar na recuperação.
Crianças e idosos correm maior risco de desidratação. Por isso, é importante tomar também os sais de reidratação oral, fornecidos pelos postos de saúde. Eles devem ser misturados em água, na quantidade indicada na embalagem.
Na falta desses sais, podemos preparar e oferecer o soro caseiro. Assim: num copo com água fervida ou filtrada, dissolvemos uma pitada de sal e duas colheres de chá de açúcar.

Cólera
Originária da Ásia, mais precisamente da Índia e de Bangladesh, a cólera se espalhou para outros continentes a partir de 1817. Chegou ao Brasil no ano de 1885, invadindo os estados do Amazonas, Bahia, Pará e Rio de Janeiro. Em 1893 a doença chegou a São Paulo, alastrando-se tanto na capital quanto no interior do estado. No entanto, no final do século XIX, o governo brasileiro declarava a doença erradicava de todo o país. Cerca de um século depois, em abril de 1991, a cólera chegou novamente ao Brasil. Vindo o Peru, fez sua primeira vítima na cidade de Tabatinga, Amazonas.

A cólera é uma doença infecciosa que ataca o intestino dos seres humanos. A bactéria que a provoca foi descoberta por Robert Koch em 1884 e, posteriormente, recebeu o nome de Vibrio cholerae. Ao infectar o intestino humano, essa bactéria faz com que o organismo elimine uma grande quantidade de água e sais minerais, acarretando séria desidratação. A bactéria da cólera pode ficar incubada de um a quatro dias.
Quando a doença se manifesta, apresenta os seguintes sintomas: náuseas e vômitos; cólicas abdominais; diarréia abundante, esbranquiçada como água de arroz, podendo ocasionar a perda de até um litro de água por hora e cãibras.
A cólera é transmitida principalmente pela água e por alimentos contaminados. Quanto o vibrião é ingerido, instala-se no intestino do homem. Esta bactéria libera uma substância tóxica, que altera o funcionamento normal das células intestinais. Surgem, então, a diarréia e o vômito.
Os casos de cólera podem ser fatais, se o diagnóstico não for rápido e o doente não receber tratamento correto. O tratamento deve ser feito com acompanhamento médico, usando-se antibióticos para combater a infecção e medicamentos para combater a diarréia e prevenir a desidratação. A prevenção da cólera pode ser feita através de vacina e principalmente através de medidas de higiene e saneamento básico. A vacinação é de responsabilidade do governo. No caso da cólera, não há garantia de que todas as pessoas vacinadas fiquem imunes à doença. Estima-se que a vacina existente tenha um grau de eficácia inferior a 50%.
Leptospirose
A leptospirose é uma doença bacteriana, que afeta humanos e animais, causada pela bactéria do gênero Leptospira. É transmitida pela água e alimentos contaminados pela urinas de animais, principalmente o rato. É uma doença muito comum depois de enchentes, pois as pessoas andam sem proteção em águas contaminadas.
Em humanos a leptospirose causa uma vasta gama de sintomas, sendo que algumas pessoas infectadas podem não ter sintoma algum. Os sintomas da leptospirose incluem febre alta, dor de cabeça forte, calafrio, dor muscular e vômito. A doença também pode causar os seguintes sintomas: olhos e pele amarelada, olhos vermelhos, dor abdominal, diarréia e erupções na pele. Se a leptospirose não for tratada, o paciente pode sofrer danos nos rins, meningite (inflamação na membrana ao redor do cérebro e cordão espinhal), falha nos rins e problemas respiratórios. E raras ocasiões a leptospirose pode ser fatal. Muitos desses sintomas podem ser confundidos com outras doenças, de modo que a leptospirose é confirmada através de testes laboratoriais de sangue ou urina.

Hepatite


É uma inflamação no fígado que pode ser provocada por vários tipos de vírus. Os sintomas são parecidos com os da gripe e há também icterícia (coloração amarelada da pele causada pelo depósito de uma substância produzida pelo fígado). A pessoa precisa ficar em repouso e seguir as orientações médicas.
Algumas formas de hepatite são transmitidas por água e alimentos contaminados por fezes (Tipo A e E). Outros tipos são transmitidos por transfusão de sangue (B, C) ou por relações sexuais.
Quem já teve hepatite não pode doar sangue, já que o vírus às vezes continua no organismo, mesmo que não haja sintomas da doença.
Saiba mais sobre hepatites aqui.

Para algumas formas de hepatite (A e B) há uma vacina que pode ser aplicada em crianças e adultos

Esquistossomose
É também chamada Xistosa, ou doença do caramujo. Ela é provocada por um verme chamado esquistossomo. Os vermes vivem nas veias do intestino e podem provocar diarréia, emagrecimento, dores na barriga, que aumenta muito de volume (barriga-d'água), e problemas em vários órgãos do corpo.
Os ovos do esquitossomo saem junto com as fezes da pessoa contaminada. Se não houver fossa ou rede de esgotos, eles podem chegar a água doce (lagos, lagoas ou riachos, margens de rios, etc). Na água, os ovos dão origem a pequenas larvas (animais diferentes dos vermes adultos) chamados miracídios. As larvas penetram em um tipo de caramujo chamado planorbídeo. No interior do caramujo, elas se reproduzem e se transformam em outras larvas, as cercárias, que saem do caramujo e ficam nadando livres na água.
A cercária pode penetrar, através da pele, nas pessoas que usam a água de lagos, lagoas, riachos e outros locais para tomar banho, lavar roupa, trabalhar, pescar ou outras atividades.

Além de tratar o doente com medicamentos, é necessário instalar um sistema de esgotos para impedir que os ovos atinjam a água. As pessoas precisam também ter acesso a água de boa qualidade e ser informadas sobre as formas de transmissão da doença.
É preciso também combater o caramujo que transmite a esquistossomose com produtos químicos e com a criação de peixes que se alimentam do caramujo, como a tilápia, o tambaqui e o piau. Esses peixes podem ser consumidos pelas pessoas sem risco de contaminação.
Água, mosquitos e doenças
Muitos mosquitos põem ovos na água parada. Dos ovos saem larvas, que depois se tornam mosquitos adultos.
Uma forma de combater as doenças transmitidas por mosquitos é justamente evitar o acúmulo de água parada em vasos de plantas, latas vazias, pneus velhos, garrafas, etc. Caixas-d'água, tanques e outros reservatórios devem ficar sempre tampados.
Veja a seguir algumas doenças transmitidas por mosquitos.
Dengue
A dengue é uma das maiores preocupações em relação a doenças infecciosas atualmente no Brasil. O Estado de São Paulo registrou a ocorrência de 78.614 casos autóctones (adquiridos no próprio Estado) de dengue, em 358 municípios, entre janeiro e outubro de 2007, com considerável expansão da doença para novas áreas. Durante todo o ano de 2006 foram registrados 50.021 casos em 254 municípios. Atualmente, temos 508 municípios infestados com o Aedes aegypti, excluindo-se apenas alguns municípios do Vale do Ribeira e do Paraíba e das Regiões Metropolitanas de São Paulo e de Campinas.

O que é dengue?
É uma virose transmitida por um tipo de mosquito (Aedes aegypti) que pica apenas durante o dia, ao contrário do mosquito comum (Culex), que pica de noite. A infecção pode ser causada por qualquer um dos quatro tipos (1, 2, 3 e 4) do vírus da dengue, que produzem as mesmas manifestações. Em geral, o início é súbito com febre alta, dor de cabeça e muita dor no corpo. É comum a sensação de intenso cansaço, a falta de apetite e, por vezes, náuseas e vômitos. Podem aparecer manchas vermelhas na pele, parecidas com as do sarampo ou da rubéola, e prurido (coceira) no corpo. Pode ocorrer, às vezes, algum tipo de sangramento (em geral no nariz ou nas gengivas). A dengue não é transmitida diretamente de uma pessoa para outra.

O que uma pessoa deve fazer se achar que está com dengue?
- Procurar um Serviço de Saúde logo no começo dos sintomas. Diversas doenças são muito parecidas com a dengue, e têm outro tipo de tratamento.
- Beber bastante líquido, evitando-se as bebidas com cafeína (café, chá preto). Não tomar remédios por conta própria, mesmo aqueles normalmente indicados para dor ou febre. Todos os medicamentos podem ter efeitos colaterais e alguns que podem até piorar a doença. A dengue não tem tratamento específico. Os medicamentos são empregados para atenuar as manifestações (dor, febre).
- Informar ao médico se estiver em uso de qualquer remédio. Alguns medicamentos utilizados no tratamento de outras doenças (Marevan®, Ticlid® etc.) podem aumentar o risco de sangramentos.
- Não tomar nenhum remédio para dor ou para febre que contenha ácido acetil-salicílico (AAS®, Aspirina®, Melhoral® etc.) - que pode aumentar o risco de sangramento.

Os antiinflamatórios (Voltaren®, Profenid ® etc) também não devem ser utilizados como antitérmicos pelo risco de efeitos colaterais, como hemorragia digestiva e reações alérgicas.

Os remédios que tem dipirona (Novalgina®, Dorflex®, Anador® etc.) devem ser evitados, pois podem diminuir a pressão ou, às vezes, causar manchas de pele parecidas com as da dengue.

O paracetamol (Dôrico®, Tylenol® etc), mais utilizado para tratar a dor e a febre na dengue, deve ser tomado rigorosamente nas doses e no intervalo prescritos pelo médico, uma vez que em doses muito altas pode causar lesão hepática.

Como é feito o diagnóstico de dengue?
O diagnóstico inicial de dengue é clínico (história + exame físico da pessoa) feito essencialmente por exclusão de outras doenças. Feito o diagnóstico clínico de dengue, alguns exames (hematócrito, contagem de plaquetas) podem trazer informações úteis quando analisados por um médico, mas não comprovam o diagnóstico, uma vez que também podem estar alterados em várias outras infecções. A comprovação do diagnóstico, se for desejada por algum motivo, pode ser feita através de sorologia (exame que detecta a presença de anticorpos contra o vírus da dengue), que começa a ficar reativa ("positiva") a partir do quarto dia de doença.

É necessário esperar o resultado de exames para iniciar o tratamento?
Não. Uma vez que, excluídas clinicamente outras doenças, a dengue passa a ser o diagnóstico mais provável, os resultados de exames (que podem demorar muito) não podem retardar o início do tratamento. O tratamento da dengue é feito, na maioria das vezes, com uma solução para reidratação oral (disponível nas Unidades de Saúde), que deve ser iniciada o mais rápido possível.

A comprovação do diagnóstico de dengue é útil para o tratamento da pessoa doente?
Não. A comprovação sorológica do diagnóstico de dengue poderá ser útil para outras finalidades (vigilância epidemiológica, estatísticas) e é um direito do doente, mas o resultado do exame comumente estará disponível apenas após a pessoa ter melhorado, o que o torna inútil para a condução do tratamento. O exame sorológico também não permite dizer qual o tipo de vírus que causou a infecção (o que é irrelevante) e nem se a dengue é "hemorrágica".

O que é dengue "hemorrágica"?
Dengue "hemorrágica" é a dengue mais grave. Apesar do nome, que é impreciso, o principal perigo da dengue "hemorrágica" não são os sangramentos, mas sim a pressão arterial muito baixa (choque). É importante saber que outras doenças, como a meningite meningocócica, podem ser muito parecidas com a dengue, embora a pessoa fique grave muito mais rápido (logo no primeiro ou segundo dia de doença). A dengue pode se tornar mais grave apenas quando a febre começa a diminuir. O período mais perigoso está nos três primeiros dias depois que a febre começa a desaparecer. Pode aparecer qualquer uma dessas alterações:

- dor no fígado (nas costelas, do lado direito)
- tonteiras, desmaios
- pele fria e pegajosa, suor frio
- sangramentos
- fezes escuras, parecidas com borra de café

O que fazer se aparecer qualquer um desses sintomas?
Procurar imediatamente o Centro Municipal de Saúde ou o Hospital mais próximo.

A dengue "hemorrágica" só ocorre em quem tem dengue pela segunda vez.
Não. A forma grave da dengue também pode ocorrer em quem tem a doença pela primeira vez.

A dengue "hemorrágica" é obrigatória em que tem a doença pela segunda vez?
Não. O risco é maior do que na primeira infecção, mas a imensa maioria das pessoas que têm a doença pela segunda ou terceira vez não apresenta a forma grave da dengue.

Quantas vezes uma pessoa pode ter dengue?
Até quatro vezes, pois existem quatro tipos diferentes do vírus da dengue (1, 2, 3 e 4). No Rio de Janeiro, até agora, existem os tipos 1, 2 e 3. Cada vez que a pessoa tem dengue por um tipo, fica permanentemente protegido contra novas infecções por aquele tipo. É por isso que só se pode ter dengue quatro vezes.

Quem teve dengue fica com alguma complicação?
Não. A recuperação costuma ser total. É comum que ocorra durante alguns dias uma sensação de cansaço, que desaparece completamente com o tempo.

Todo mundo que é picado pelo Aedes aegypti fica doente?
Não. Primeiro é preciso que o Aëdes esteja contaminado com o vírus da dengue. Além disso, cerca de metade das pessoas que são picadas pelo mosquito que tem o vírus não apresenta qualquer sintoma.
O que fazer para diminuir o risco de pegar dengue?
O Aedes aegypti é um mosquito doméstico, que vive dentro ou nas proximidades das habitações. O único modo possível de evitar ou reduzir a duração de uma epidemia e impedir a introdução de um novo tipo do vírus da dengue é a eliminação dos transmissores. Isso é muito importante porque, além da dengue, o Aedes aegypti também pode transmitir a febre amarela.

O "fumacê" é útil para matar os mosquitos adultos, mas não acaba com os ovos. Por isso, deve ser empregado apenas em períodos de epidemias com o objetivo de interromper rapidamente a transmissão. O mais importante é procurar acabar com os criadouros dos mosquitos. Qualquer coleção de água limpa e parada, inclusive em plantas que acumulam água (bromélias), pode servir de criadouro para o Aedes aegypti.


Febre amarela
A febre amarela é uma doença infecciosa causada por um flavivírus (o vírus da febre amarela), para a qual está disponível uma vacina altamente eficaz. A doença é transmitida por mosquitos e ocorre exclusivamente na América Central, na América do Sul e na África. No Brasil, a febre amarela é geralmente adquirida quando uma pessoa não vacinada entra em áreas de transmissão silvestre (regiões de cerrado, florestas). Uma pessoa não transmite febre amarela diretamente para outra. Para que isto ocorra, é necessário que o mosquito pique uma pessoa infectada e, após o vírus ter se multiplicado, pique um indivíduo que ainda não teve a doença e não tenha sido vacinado.


A transmissão da febre amarela em área silvestre é feita por intermédio de mosquitos do gênero (principalmente) Haemagogus. O ciclo do vírus em  áreas silvestres é mantido através da infecção de macacos e da transmissão transovariana (passado de mosquito para os seus descendentes, filhos) no próprio mosquito. A infecção humana ocorre quando uma pessoa não imunizada entra em áreas de cerrado ou de florestas. Uma vez infectada, a pessoa pode, ao retornar, servir como fonte de infecção para o Aedes aegypti, que então pode iniciar a transmissão da febre amarela em área urbana. Uma pessoa pode ser fonte de infecção para o mosquito desde imediatamente antes de surgirem os sintomas até o quinto dia da infecção.
O Aedes aegypti torna-se capaz de transmitir o vírus da febre amarela 9 a 12 dias após ter picado uma pessoa infectada. No Brasil, a transmissão da febre amarela em áreas urbanas não ocorre desde 1942. Em áreas de fronteiras de desenvolvimento agrícola, pode haver uma adaptação do transmissor silvestre ao novo habitat e ocorre a conseqüente possibilidade de transmissão da febre amarela em  áreas rurais ("intermediária").

Malária
Malária ou paludismo, entre outras designações, é uma doença infecciosa aguda ou crônica causada por protozoários parasitas do gênero Plasmodium, transmitidos pela picada do mosquito Anopheles.
A malária mata 3 milhões de pessoas por ano, uma taxa só comparável à da SIDA/AIDS, e afeta mais de 500 milhões de pessoas todos os anos. É a principal parasitose tropical e uma das mais freqüentes causas de morte em crianças nesses países: (mata um milhão de crianças com menos de 5 anos a cada ano). Segundo a OMS, a malária mata uma criança africana a cada 30 segundos, e muitas crianças que sobrevivem a casos severos sofrem danos cerebrais graves e têm dificuldades de aprendizagem.


A malária é transmitida pela picada das fêmeas de mosquitos do gênero Anopheles. A transmissão geralmente ocorre em regiões rurais e semi-rurais, mas pode ocorrer em áreas urbanas, principalmente em periferias. Em cidades situadas em locais cuja altitude seja superior a 1500 metros, no entanto, o risco de aquisição de malária é pequeno. Os mosquitos têm maior atividade durante o período da noite, do crepúsculo ao amanhecer. Contaminam-se ao picar os portadores da doença, tornando-se o principal vetor de transmissão desta para outras pessoas. O risco maior de aquisição de malária é no interior das habitações, embora a transmissão também possa ocorrer ao ar livre.
O mosquito da malária só sobrevive em áreas que apresentem médias das temperaturas mínimas superiores a 15°C, e só atinge número suficiente de indivíduos para a transmissão da doença em regiões onde as temperaturas médias sejam cerca de 20-30°C, e umidade alta. Só os mosquitos fêmeas picam o homem e alimentam-se de sangue. Os machos vivem de seivas de plantas. As larvas se desenvolvem em águas paradas, e a prevalência máxima ocorre durante as estações com chuva abundante.
Rochas, minerais e solo

A crosta terrestre possui várias camadas compostas por três tipos de rochas que são formadas pela mistura de diferentes materiais. Essas rochas podem ser magmáticas, também chamadas de ígneas, sedimentares ou metamórficas.

Rochas magmáticas ou ígneas
As rochas magmáticas ou ígneas (ígneo vem do latim e significa "fogo") são originadas do interior da Terra, onde são fundidas em altíssima temperatura. Nas erupções de vulcões, essas rochas são lançadas do interior da Terra, para a superfície. Sofrem, então, resfriamento rápido e se solidificam. Outras vezes, ficam nas proximidades da superfície, onde se resfriam lentamente e, também, se solidificam.
  • O basalto é uma rocha escura muito utilizada na pavimentação de calçadas, ruas e estradas e são advindas do resfriamento rápido do magma.

No Rio Grande do Sul, encontramos as falésias de Torres, formadas de basalto.


As faixas escuras das famosas calçadas de Copacabana, no Rio de Janeiro, são formadas por basalto.

  • A pedra-pomes, gerada após rápido resfriamento em contato com a água formando uma rocha cheia de poros ou buracos devido à saída de gases. Parece uma "espuma endurecida".


A pedra-pomes é utilizada para polir objetos e amaciar a pele.

  • O granito (vem do latim granum, que significa "grão') se forma no interior da crosta terrestre por resfriamento lento e solidificação do magma. É muito utilizado em revestimento de pisos, paredes e pias. O granito é formado por grãos de várias cores e brilhos: são os minerais.

Os minerais que formam o granito
Uma rocha é formada de um ou mais minerais. A maioria das rochas compõe-se de vários tipos de minerais. Minerais são elementos ou compostos químicos, geralmente sólidos, encontrados naturalmente no planeta.
Há mais de dois mil tipos diferentes de minerais. Eles são formados pela união de vários tipos de átomos, como silício, oxigênio, alumínio, cálcio e ferro. As diferenças entre os minerais devem-se aos diferentes tipos de átomos que os formam e também à maneira como os átomos estão "arranjados".


Pedaço de granito

O Granito é usado para fazer bancada de pias, pisos, etc.

O granito é formado principalmente por três tipos de minerais: o quartzo, o feldspato e a mica.
Os grãos que aparecem em cor cinza no granito correspondem a grãos de quartzo. Veja na figura abaixo, que o quartzo, como a maioria dos minerais, é formado por uma série de partes que lembram figuras geométricas. Dizemos então que o quartzo, como a maioria dos minerais, forma cristais.


Cristal de rocha formado por uma variedade de quartzo transparente. Veja acima a forma cristalina típica desse cristal. Há também formas coloridas de quartzo, como a ametista.

O outro tipo de mineral presente no granito é o feldspato, que pode apresentar diversas tonalidades: amarelo, branco, rosa, verde.
A decomposição desse mineral pela água da chuva forma a argila que é usada para fazer tijolos, cimento, concreto e diversos objetos.
A cor preta ou cinza-escura e brilhante presente no granito corresponde a pequenos grãos de mica. Existem também outros tipos de mica, de cores diferentes. A mica é um bom isolante de calor de eletricidade; por isso é utilizada no ferro elétrico de passar roupa.

Rochas sedimentares

Observe na figura abaixo que a rocha é formada por camadas (ou estratos).
Esse tipo de rocha é chamada de rocha sedimentar e se forma a partir de mudanças ocorridas em outras rochas. Chuva vento, água dos rios, ondas do mar: tudo isso vai, aos poucos, fragmentando as rochas em grãos de minerais. Pouco a pouco, ao longo de milhares de anos, até o granito mais sólido se transforma em pequenos fragmentos. Esse processo é chamado de intemperismo.
Os fragmentos de rochas são transportados pelos ventos ou pela água da chuva até os rios, que, por sua vez, os levam para o fundo de lagos e oceanos. Lá os fragmentos vão se depositando em camadas. É assim que se formam, por exemplo, terrenos cobertos de areia, como as praias.
Esses fragmentos ou sedimentos vão se acumulando ao longo do tempo. As camadas de cima exercem pressão sobre as camadas de baixo, compactando-as. Essa pressão acaba por agrupar e cimentar os fragmentos e endurece a massa formada. É assim que surgem as rochas sedimentares. Tudo isso, não se esqueça, leva milhares de anos.
Desse modo, a areia da praia transforma-se, lentamente, em uma rocha sedimentar chamada arenito. Sedimentos de argila transforma-se em argilito.
As camadas vão cobrindo também restos de plantas e animais.

Por isso é muito comum encontrar restos ou marcas de animais e plantas em rochas sedimentares: o animal ou planta morre e é coberto por milhares de grãos de minerais.
Os restos ou marcas de organismos antigos são chamado de fósseis. Analisando os fósseis, os cientistas podem estudar como era a vida no passado em nosso planeta.




Formação das rochas sedimentares


A origem do arenito
O arenito se forma quando rochas como o granito se desintegram aos poucos  pela ação dos ventos e das chuvas. Os grãos de quartzo dessas rochas formam a areia. Areias e dunas de areia, porém não são rochas: são fragmentos de rochas. A areia pode se depositar no fundo do mar ou em depressões e ficar submetida a um aumento de pressão ou temperatura. Assim cimentada e endurecida, forma o arenito - um tipo de rocha sedimentar. O arenito é usado em pisos.

Rocha de arenito.


Dunas de areia no Vale da Morte, Califórnia.


O calcário
O acúmulo de esqueletos, conchas e carapaças de animais aquáticos ricos em carbonato de cálcio, que é um tipo de sal, pode formar outra variedade de rocha sedimentar, o calcário.
O calcário também se forma a partir de depósitos de sais de cálcio na água. O calcário é utilizado na fabricação de cimento e de cal. A cal serve para pintura de paredes ou para a fabricação de tintas. A cal ou o próprio calcário podem ser utilizados para neutralizar a acidez de solos.


Cascatas de calcário na Turquia, Egeu.
Rochas metamórficas


Ardósia é usada como piso.

Você já viu pias, pisos ou esculturas de mármore? O mármore é uma rocha formada a partir de outra rocha, o calcário. É um exemplo de rocha metamórfica.
As rochas metamórficas são assim chamadas porque se originam da transformação de rochas magmáticas ou sedimentares por processos que alteram a organização dos átomos de seus minerais. Surge, então, uma nova rocha, com outras propriedades e, às vezes, com outros minerais.
Muitas rochas metamórficas se formam quando rochas de outro tipo são submetidas a intensas pressões ou elevadas temperaturas. Quando, por exemplo, por mudanças ocorridas na crosta, uma rocha magmática é empurrada para regiões mais profundas e de maior pressão e temperatura, alterando a organização dos minerais.

Outra rocha metamórfica é a ardósia, originada da argila e usada em pisos.
Pias e pisos também podem ser feitos de gnaisse, uma rocha metamórfica originada geralmente do granito. O Corcovado e o Pão de Açúcar, no Rio de Janeiro, e a maioria das rochas da serra do Mar também são de gnaisses.


Vista da praia do morro do Pão de Açucar (RJ), formado de gnaisse.

Gemas ou pedras preciosas
As gemas são rochas muito duras. São riquezas existentes no subsolo, comumente conhecidas como pedras preciosas. As jazidas de esmeralda, rubi, diamante e outras são raras por isso essas pedras têm grande valor comercial.
No subsolo, também são encontradas jazidas de metais, por exemplo, ouro, ferro, manganês, alumínio, zinco, cobre, chumbo.
Há ainda as jazidas de material de origem orgânica, conhecidas como combustíveis fósseis - formadas a partir da transformação de restos de plantas e animais. O carvão-de-pedra (hulha) e o petróleo são exemplos desses combustíveis, recursos energéticos, ou seja, substâncias utilizadas na produção de energia.


Na foto podemos observar algumas gemas ou pedras preciosas.

O ciclo das rochas

Você viu que as rochas magmáticas são formadas tanto pela cristalização do magma no interior da terra como pela lava liberada dos vulcões. Mas as rochas magmáticas - e também as metamórficas - podem ser quebradas em pequenos pedaços ou fragmentos que se acumulam em camadas de sedimentos e acabam se transformando, por compressão, em rochas sedimentares. Finalmente, você viu também que as rochas sedimentares e também as magmáticas, sob a ação de altas temperaturas e pressão, podem se transformar em rochas metamórficas.
Mas, se uma rocha metamórfica for derretida, ela pode novamente se tornar uma rocha magmática! Essas mudanças formam, portanto, um ciclo em que uma rocha, ao longo de muito tempo, pode se transformar em outra. É o ciclo das rochas.




Como o solo se formou
A camada de rochas na superfície da Terra está, há milhões de anos, exposta a mudanças de temperatura e à ação da chuva, do vento, da água dos rios e das ondas do mar. Tudo isso vai, aos poucos, fragmentando as rochas e provocando transformações químicas. Foi assim, pela ação do intemperismo, que, lentamente, o solo se formou. E é dessa mesma maneira que está continuamente se remodelando.
Os seres vivos também contribuem para esse processo de transformação das rochas em solo. Acompanhe o esquema abaixo:


  1. A chuva e o vento desintegram as rochas.
  2. Pedaços de liquens ou sementes são levados pelo vento para uma região sem vida. A instalação e a reprodução desses organismos vão aos poucos modificando o local. Os liquens, por exemplo, produzem ácidos que ajudam a desagregar as rochas. As raízes de plantas que crescem nas fendas das rochas irão contribuir para isso.
  3. A medida que morrem, esses organismos enriquecem o solo em formação com matéria orgânica e, quando ela se decompõe, o solo se torna mais rico em sais minerais. Outras plantas, que necessitam de mais nutrientes para crescer, podem então se instalar no local. Começa a ocorrer o que se chama de sucessão ecológica: uma série de organismos se instala até que a vegetação típica do solo e do clima da região esteja formada.

O que existe no solo
Há muitos tipos de solo. A maioria deles é composta de areia e argila, vindas da fragmentação das rochas, e de restos de plantas e animais mortos (folhas, galhos, raízes, etc.). Esses restos estão sempre sendo decompostos por bactérias e fungos, que produzem uma matéria orgânica escura, chamadas húmus. À medida que a decomposição continua, o húmus vai sendo transformado em sais minerais e gás carbônico. Ao mesmo tempo, porém, mais animais e vegetais se depositam no solo e mais húmus é formado.
A decomposição transforma as substâncias orgânicas do húmus em substâncias minerais, que serão aproveitadas pelas plantas. Desse modo, a matéria é reciclada: a matéria que formava o corpo dos seres vivos acabará fazendo novamente parte deles depois de decomposta.
Vemos, então, que o solo é formado por uma parte mineral, que se originou da desagregação das rochas, e por uma parte orgânica, formada pelos restos dos organismos mortos e pela matéria orgânica do corpo dos seres vivos que está sofrendo decomposição. Vivem ainda no solo diversos organismos, inclusive as bactérias e os fungos, responsáveis pela decomposição da matéria orgânica dos seres vivos.
Nos espaços entre os fragmentos de rochas, há ainda água e ar - ambos importantes para o desenvolvimento das plantas.

Por baixo da camada superficial do solo encontramos fragmentos de rochas. Quanto maior a profundidade em relação ao solo, maiores são também os fragmentos de rocha.
O ser humano retira recursos minerais das camadas abaixo do solo. Parte da água da chuva, por exemplo, se infiltra no solo, passando entre os espaços dos grãos de argila e de areia. Outra parte vai se infiltrando também nas rochas sedimentares e em fraturas de rochas, até encontrar camadas de rochas impermeáveis. Formam-se assim os chamados lençóis de água ou lençóis freáticos, que abastecem os poços de água.
Finalmente, na camada mais profunda da crosta terrestre, encontramos a rocha que deu origem ao solo - a rocha matriz.

Tipos de solo

O tipo de solo encontrado em um lugar vai depender de vários fatores: o tipo de rocha matriz que o originou, o clima, a quantidade de matéria orgânica, a vegetação que o recobre e o tempo que se levou para se formar.
Em climas secos e áridos, a intensa evaporação faz a água e os sais minerais subirem. Com a evaporação da água, uma camada de sais pode depositar-se na superfície do solo, impedindo que uma vegetação mais rica se desenvolva.
Já em climas úmidos, com muitas chuvas, á água pode se infiltrar no solo e arrastar os sais para regiões mais profundas.
Alguns tipos de solo secam logo depois da chuva, outros demoram para secar. Por que isso acontece? E será que isso influencia na fertilidade do solo?
  • Solos arenosos são aquele que têm uma quantidade maior de areia do que a média (contêm cerca de 70% de areia). Eles secam logo porque são muito porosos e permeáveis: apresentam grandes espaços (poros) entre os grãos de areia. A água passa, então, com facilidade entre os grãos de areia e chega logo às camadas mais profundas. Os sais minerais, que servem de nutrientes para as plantas, seguem junto com a água. Por isso, os solos arenosos são geralmente pobres em nutrientes utilizados pelas plantas.


  • Os chamados solos argilosos contêm mais de 30% de argila. A argila é formada por grãos menores que os da areia. Além disso, esses grãos estão bem ligados entre si, retendo água e sais minerais em quantidade necessária para a fertilidade do solo e o crescimento das plantas. Mas se o solo tiver muita argila, pode ficar encharcado, cheio de poças após a chuva. A água em excesso nos poros do solo compromete a circulação de ar, e o desenvolvimento das plantas fica prejudicado. Quando está seco e compacto, sua porosidade diminui ainda mais, tornando-o duro e ainda menos arejado.

Solo argiloso.


Solo argiloso compactado pela falta de água.


  • A terra preta, também chamada de terra vegetal, é rica em húmus. Esse solo, chamado solo humífero, contém cerca de 10% de húmus e é bastante fértil. O húmus ajuda a reter água no solo, torna-se poroso e com boa aeração e, através do processo de decomposição dos organismos, produz os sais minerais necessários às plantas.
Os solos mais adequados para a agricultura possuem uma certa proporção de areia, argila e sais minerais utilizados pelas plantas, além do húmus. Essa composição facilita a penetração da água e do oxigênio utilizado pelos microorganismos. São solos que retêm água sem ficar muito encharcados e que não são muito ácidos.


  • Terra roxa é um tipo de solo bastante fértil, caracterizado por ser o resultado de milhões de anos de decomposição de rochas de arenito-basáltico originadas do maior derrame vulcânico que este planeta já presenciou, causado pela separação da Gondwana - América da Sul e África - datada do período Mezozóico. É caracterizado pela sua aparência vermelho-roxeada inconfundível, devida a presença de minerais, especialmente Ferro.
No Brasil, esse tipo de solo aparece nas porções ocidentais dos estados do Rio Grande do Sul, Santa Catarina, Paraná, São Paulo e sudeste do Mato Grosso do Sul, destacando-se sobretudo nestes três últimos estados por sua qualidade.


Historicamente falando, esse solo teve muito importância, já que, no Brasil, durante o fim do século XIX e o início do século XX, foram plantadas nestes domínios, várias grandes lavouras de café, fazendo com que surgisse várias ferrovias e propiciasse o crescimento de cidades, como São Paulo, Itu, Ribeirão Preto e Campinas. Atualmente, além do café, são plantadas outras culturas.
O nome terra roxa é dado a esse tipo de solo, devido aos imigrantes italianos que trabalhavam nas fazendas de café, referindo-se ao solo com a denominação Terra rossa, já que rosso em italiano significa vermelho. E, devido a similaridade entre essa palavra, e a palavra "roxa", o nome "Terra roxa" acabou se consolidando.
O solo de terra roxa também existe na Argentina, aonde é conhecida como "tierra colorada", bastante presente nas províncias de Misiones e Corrientes.
O solo é um grande filtro

Para que se obtenha plantas saudáveis e uma horta produtiva é necessário que o solo contenha água. A capacidade de retenção de água depende do tipo de solo. A água, por ser um líquido solvente, dissolve os sais existentes no solo, e assim as plantas podem absorvê-los
Nem toda a água da chuva flui diretamente para os córregos, riachos e rios. Quando chove, parte da água infiltra-se e vai penetrando na terra até encontrar uma camada impermeável, encharcando o solo. Por exemplo, 1 metro cúbico (1m³) de areia encharcada pode conter até 400 litros de água.
O ar também ocupa os poros existentes entre os grãos de terra. As raízes das plantas e os animais que vivem no solo precisam de ar para respirar.


Esquema mostrando camadas do solo e subsolo, em corte.

Quando o solo se encharca a água ocupa o lugar antes ocupado pelo ar, dificultando o desempenho das raízes e a vida dos animais no solo.
Se o solo estiver muito compactado, não filtrará a água com facilidade. Acontecerão, por exemplo, as grandes enxurradas após uma forte chuva. A urbanização, com a pavimentação de ruas e estradas, a canalização de rios e o desmatamento de grandes áreas dificultam o escoamento da água das chuvas.


Terras para agricultura

Por muito tempo, no passado, a espécie humana conseguia alimento apenas caçando, pescando e colhendo grãos, frutos e raízes. Mas, há cerca de dez mil anos, nossa espécie passou também a plantar os vegetais e criar os animais que lhe servem de alimento. Era o ponto de partida para o desenvolvimento da agricultura.

Com o aumento da população e a necessidade de se produzirem cada vez mais alimentos, a vegetação original das florestas e de outros ecossistemas foi sendo destruída para dar lugar ao cultivo de plantas comestíveis e à criação de animais. Hoje, o desmatamento é feito com máquinas (tratores e serras) ou com o fogo - são as chamadas queimadas, que trazem uma série de problemas.
De todas as terras emersas (fora da água) que formam os continentes e as ilhas do nosso planeta, apenas 10% aproximadamente são cultiváveis.

Muitas vezes, a atividade agrícola é feita de forma inadequada, por desconhecimento ou por falta de recursos e equipamentos. Como resultado, depois de alguns anos de produção, os nutrientes do solo se esgotam e as plantas não crescem mais.
Dependendo do tipo de solo e do tipo de plantação são necessários tomar alguns cuidados com a terra, e aplicar certos procedimentos como vamos ver a seguir.

Agricultura sustentável
A agricultura para a produção de alimentos para ser sustentável, em relação ao meio ambiente:
  • não deve causar prejuízos ao ambiente;
  • não deve liberar substâncias tóxicas ou danosas na atmosfera, nas águas superficiais ou nos lençóis freáticos;
  • deve preservar e restaurar a fertilidade do solo, prevenindo a erosão;
  • deve usar água de modo a permitir que se recarreguem as reservas aqüíferas, evitando que elas se esgotem.
Produzir alimento implica também manter uma diversidade de culturas para não empobrecer o solo e usar, quando necessário, um controle biológico para as pestes, mas com cuidado para evitar a contaminação do ambiente com substâncias químicas que possam se acumular.
Dessa forma a agricultura sustentável facilita a economia local e preserva a saúde do solo e a dos seres que nele vivem.

Cuidados com o solo
Quando o solo não apresenta condições necessárias à agricultura ou quando se deseja melhorar as suas condições, alguns cuidados devem ser tomados, como adubação, rotação de culturas, aragem do solo, irrigação e drenagem.

Adubação
Adubar significa enriquecer o solo com elementos nutrientes, quando ele está deficiente de minerais. Para isso, são utilizados adubos, substâncias capazes de fertilizar o solo.
Os adubos podem ser orgânicos (por exemplo: esterco, farinha de osso, folhas, galhos enterrados) ou minerais, que são inorgânicos (por exemplo: substâncias químicas são aplicadas, como nitrato de sódio, um tipo de sal).
Há ainda a adubação verde. Algumas vezes, as leguminosas também são utilizadas como adubos. Quando crescem são cortadas e enterradas no solo, enriquencendo-os com nitratos.

Rotação de culturas
A rotação de culturas consiste de alternar o plantio de leguminosas com outras variedades de plantas no mesmo local. Dessa forma as leguminosas, pela associação com bactérias que vivem nas suas raízes, devolvem para o local nutrientes utilizados por outras plantas, evitando o esgotamento do solo.

Aragem do solo
Arar o solo é outro cuidado que se deve ter para o solo não ficar compactado, "socado".
Revolver a terra, além de arejar, facilita a permeabilidade do solo, permitindo que as raízes das plantas penetrem, no solo, além de levar para a superfície o húmus existente.


Minhocas - arados da natureza
As minhocas realizam um verdadeiro "trabalho" de arado no solo. Ao se movimentarem, elas abrem túneis e engolem parte da terra que deslocam, retirando daí o seu alimento.
Esses túneis, também denominados galerias, aumentam a porosidade do solo, e por isso a circulação do ar e a infiltração de água se intensificam.
As suas fezes contribuem para a formação do húmus, matéria orgânica importantíssima para a fertilidade do solo, facilitando o desenvolvimento de microorganismos decompositores ou fixadores de nitrogênio.
A minhocultura é a criação de minhocas em tanques especiais com finalidades comerciais. As minhocas são vendidas para isca, mas o húmus por elas produzido é comercializado como fertilizante para a agricultura, a jardinagem etc.



Irrigação e drenagem
Irrigar e drenar são alguns dos cuidados que devem ser tomados para manter o nível da umidade necessário ao solo e para garantir que ele continue fértil.
Com a irrigação, a água chega as regiões ou áreas muito secas. Já com a drenagem, retira-se o excesso de água do solo, possibilitando que ele seja arejado. Com o aumento dos poros, criam-se passagens de ar entre as partículas do solo.


Os perigos da poluição do solo

Não só os ecologistas, mas autoridades e todo cidadão devem ficar atentos aos perigos da poluição que colocam em risco a vida no planeta Terra.

O lixo
No início da história da humanidade, o lixo produzido era formado basicamente de folhas, frutos, galhos de plantas, pelas fezes e pelos demais resíduos do ser humano e dos outros animais. Esses restos eram naturalmente decompostos, isto é, reciclados e reutilizados nos ciclos do ambiente.
Com as grandes aglomerações humanas, o crescimento das cidades, o desenvolvimento das indústrias e da tecnologia, cada vez mais se produzem resíduos (lixo) que se acumulam no meio ambiente.
Hoje, além do lixo orgânico, que é naturalmente decomposto, reciclado e "devolvido" ao ambiente, há o lixo industrial eletrônico, o lixo hospitalar, as embalagens de papel e de plástico, garrafas, latas etc. que, na maioria das vezes, não são biodegradáveis, isto é, não são decompostos por seres vivos e se acumulam na natureza.


Lixo urbano despejado nos rios.


Lixões a céu aberto
A poluição do solo causada pelo lixo pode trazer diversos problemas.
O material orgânico que sofre a ação dos decompositores - como é o caso dos restos de alimentos - ao ser decompostos, forma o chorume. Esse caldo escuro e ácido se infiltra no solo. Quando em excesso, esse líquido pode atingir as águas do subsolo (os lençóis freáticos) e, por conseqüência contaminar as águas de poços e nascentes.
As correntezas de água da chuva também podem carregar esse material para os rios, os mares etc.


O liquido escuro é chorume saido dos lixos.


Chorume nos rios (mancha escura)


A poluição do solo por produtos químicos

A poluição do solo também pode ser ocasionada por produtos químicos lançado nele sem os devidos cuidados. Isso ocorre, muitas vezes, quando as indústrias se desfazem do seu lixo químico. Algumas dessas substâncias químicas utilizadas na produção industrial são poluentes que se acumulam no solo.
Um outro exemplo são os pesticidas aplicados nas lavouras e que podem, por seu acúmulo, saturar o solo, ser dissolvidos pela água e depois ser absorvidos pelas raízes das plantas. Das plantas passam para o organismo das pessoas e dos outros animais que delas se alimentam.
Os fertilizantes, embora industrializados para a utilização no solo, são em geral, tóxicos. Nesse caso, uma alternativa possível pode ser, por exemplo, o processo de rotação de culturas, usando as plantas leguminosas; esse processo natural não satura o solo, é mais econômico que o uso de fertilizantes industrializados e não prejudica a saúde das pessoas.
A poluição do solo, e da biosfera em geral, pode e deve ser evitada. Uma das providências necessárias é cuidar do destino do lixo.

O destino do lixo


Lixão de Araruama.

O lixo das residências, das escolas e das fábricas diferem quanto ao seu destino.
Se você mora em uma cidade e ela conta com a coleta de lixo, um importante serviço de saneamento básico, possivelmente ele será transportado para longe do ambiente urbano.
Mas vale lembrar que os depósitos de lixo a céu aberto ou mesmo os aterros comuns, onde o lixo é coberto de forma aleatória, não resolvem o problema da contaminação do ambiente, principalmente do solo.

Aterros sanitários
Nos aterros sanitários, o lixo, coberto com terra e amassado, é colocado em grandes buracos. Esse procedimento é repetido várias vezes, formando-se camadas sobrepostas.

Os aterros sanitários possuem sistemas de drenagem, que retiram o excesso de líquido, e sistemas de tratamento de resíduos líquidos e gasosos.
A construção de um aterro sanitário exige alguns cuidados:




  • o aterro deve ser pouco permeável, isto é, deixar passar pouca água e lentamente;
  • o aterro deve ser distante de qualquer lugar habitado;
  • não deve haver lençol subterrâneo de água nas proximidades do aterro.
Por essas razões, a implantação e a manutenção de um aterro sanitário têm um alto custo econômico.


Aterro sanitário em Sorocaba.
Incineração
A incineração reduz bastante o volume de resíduos e destrói organismos que causam doenças. É um processo caro, pois, para evitar a poluição do ar, é necessária a instalação de filtros e de equipamentos especiais para filtrar a fumaça resultante da incineração, que também é poluente.
O lixo deve ser queimado em aparelhos e usinas especiais. Após a queima,  o material que resta pode ser encaminhado para aterros sanitários.




Compostagem
A compostagem é a transformação dos restos orgânicos do lixo em um composto, nesse caso, em adubo. Esse adubo é resultado da ação de seres decompositores (bactérias e fungos) sobre as substâncias orgânicas do lixo.




Reciclagem
Reciclar é uma boa opção, pois diversos componentes do nosso lixo diário podem ser reaproveitados.
Em várias cidades brasileiras, há a coleta seletiva e a reciclagem do lixo, o que tem contribuído para diminuir o desperdício, além de proteger o solo de materiais não recicláveis pela natureza.

Aprenda aqui sobre a reciclagem

A erosão do solo

Como sabemos as chuvas, o vento e as variações de temperatura provocadas pelo calor e pelo frio alteram e desagregam as rochas. O solo também sofre a ação desses fatores: o impacto das chuvas e do vento, por exemplo, desagrega as suas partículas. Essas partículas vão então sendo removidas e transportadas para os rios, lagos, vales e oceanos.


Torres, RS

Bahia

Nas fotos acima, podemos observar como a ação da própria natureza pode provocar mudanças profundas na paisagem. O mar, chuva e o vento esculpiram os paredões na praia de Torres, RS e as falésias na Bahia.
No clima úmido e nos solos cobertos por uma vegetação natural, a erosão é, em geral, muito lenta, o que permite que seja compensada pelos processos que formam o solo a partir das rochas.
Os cientistas afirmam que as montanhas mais altas e que tem seus picos em forma de agulhas apontadas para cima são novas, do aspecto geológico. As mais antigas  não são tão altas e tem o cume arredondado, com as suas rochas duras à vista. Elas vêm sofrendo a mais tempo a ação erosiva, que as desgastou bastante. Esse tipo de erosão é muito comum no território brasileiro, mas, por ter uma ação lenta, é quase sempre imperceptível aos nossos olhos.


Montanha com pico em forma de agulha: Dedo de Deus, Rio de Janeiro, RJ.


Montanha com o cume arredondado: Pedra Azul em domingos Martins, ES.
A ação do ser humano

O desmatamento provocado pelas atividades humanas acelera muito a erosão natural. Vamos ver por quê.
Em vez de cair direto no solo, boa parte da água da chuva bate antes na copa das árvores ou nas folhas da vegetação, que funcionam como um manto protetor. Isso diminui muito o impacto da água sobre a superfície. Além disso, uma rede de raízes ajuda a segurar as partículas do solo enquanto a água escorre pela terra. E não podemos esquecer também que a copa das árvores protege o solo contra o calor do Sol e contra o vento.

Desmatamento para o cultivo em Marcelândia, MT.

Ao destruirmos a vegetação natural para construir casa ou para a lavoura, estamos diminuindo muito a proteção contra a erosão. A maioria das plantas que nos serve de alimento tem pouca folhagem e , por isso, não protege tão bem o solo contra a água da chuva. Suas raízes são curtas e ficam espaçadas nas plantações, sendo pouco eficientes para reter as partículas do solo. Finalmente, muitas plantas - como o milho, a cana-de-açúcar, o feijão e o algodão - não cobrem o solo o ano inteiro, deixando-o exposto por um bom tempo. O resultado é que a erosão se acelera, e a parte fértil fica prejudicada.

Com a erosão, o acúmulo de terra transportada pela água pode se depositar no fundo dos rios, obstruindo seu fluxo. Esse fenômeno é chamado de assoreamento e contribui para o transbordamento de rios e o alagamento das áreas vizinhas em períodos de chuva.

O município de Sítio do Mato no oeste baiano, está sendo engolido pelas águas e areias do Rio São Francisco.

Há ainda outro problema resultante do desmatamento. Sem a cobertura da vegetação, as encostas dos morros correm maior risco de desmoronar, provocando desabamentos de terra e rochas, com graves consequências.
Quando o desmatamento é feito por meio de queimadas, ocorre outro problema: o fogo acaba destruindo também os microorganismos que realizam a decomposição da matéria orgânica e promovem a reciclagem dos nutrientes necessários às plantas. A perda de matéria orgânica deixa o solo mais exposto à erosão e à ação das chuvas, acentuando o seu empobrecimento.
A queimada também libera na atmosfera gases que, quando em concentração muito elevada, prejudicam a saúde humana. Além disso, nos casos em que a queimada é realizada de forma não controlada, ela pode se alastrar por áreas de proteção ambiental, parques, etc.
Por todos esses motivos, as queimadas devem ser evitadas.


Devastação provocada pelas queimadas.
Como evitar a erosão?

Existem técnicas de cultivo que diminuem a erosão do solo. Nas encostas, por exemplo, onde a erosão é maior, as plantações podem ser feitas em degraus ou terraços, que reduzem a velocidade de escoamento da água.
Em encostas não muito inclinadas, em vez de plantar as espécies dispostas no sentido do fluxo da água, devemos formar fileiras de plantas em um mesmo nível do terreno, deixando espaço entre as carreiras. Essas linhas de plantas dispostas em uma mesma altura são chamadas de curvas de nível.
Outra forma de proteger a terra é cultivar no mesmo terreno plantas diferentes mas em períodos alternados. Desse modo o solo sempre tem alguma cobertura protetora. É comum a alternância de plantação de milho; por exemplo, com uma leguminosa. As leguminosas trazem uma vantagem adicional ao solo: repõe o nitrogênio retirado do solo pelo milho ou outra cultura. Esse "rodízio" de plantas é conhecido como rotação de culturas.
Cabe ao governo orientar os agricultores sobre as plantas mais adequadas ao cultivo em suas terras e sobre as técnicas agrícolas mais apropriadas. É fundamental também que os pequenos proprietários do campo tenham acesso a recursos que lhes possibilitem comprar equipamentos e materiais para o uso correto do solo.


Ecologia
O que a ecologia estuda?
A floresta Amazônica apresenta uma vegetação riquíssima. E a variedade de animais também é enorme. Calcula-se que em uma única árvore da floresta Amazônica podem ser encontradas mais de mil espécies diferentes de insetos.

De fato, se reunirmos todas as florestas tropicais do planeta, veremos que nelas se encontra mais da metade das espécies vivas. Podemos dizer então que a floresta Amazônica possui uma grande biodiversidade.
Veja agora uma foto da caatinga. A vegetação já é bem diferente.

Porque existe essa diferença? Essa é uma das muitas perguntas que a ecologia tenta responder.
Veja só mais alguns exemplos de questões importantes, relacionadas à nossa vida, e as quais a ecologia tenta responder: "O que pode acontecer se um floresta for destruída?"; "É possível explorar uma floresta sem provocar a sua destruição?", "Como o ser humano interfere na vida dos outros organismos?"; "O que provoca o aumento da temperatura na Terra?"; "E o que pode acontecer se a temperatura da Terra aumentar muito?"; etc.
Vamos dar um exemplo. Considere o Bugio, um dos maiores macacos neotropicais, vivem deste a Bahia até o Rio Grande do Sul. Vive em bandos de três a doze indivíduos, de ambos os sexos e várias idades, chefiados por um macho adulto. Sua dieta é predominantemente folívora (folhas). Os outros alimentos são: flores, brotos, frutos, caules de trepadeiras.
A Ecologia pode estudar:
  • as relações que um bando de Bugios tem com os outros seres da floresta;
  • a influência do clima sobre todos os organismos da floresta;
  • a influência das florestas neotropicais sobre o clima;
  • a influência da ação do ser humano sobre o clima de todo o planeta.

Você pode concluir que a ecologia é um campo de estudo muito amplo. E todas essas informações nos ajudam a melhorar o ambiente em que vivemos, diminuindo a poluição, conservando os recursos naturais e protegendo nossa saúde e a das gerações futuras.
Resumindo: Ecologia é a ciência que estuda as relações dos seres vivos entre si e com o ambiente.
Termos utilizados na Ecologia

Habitat
O habitat é o lugar na natureza onde uma espécie vive. Por exemplo, o habitat da planta vitória régia são os lagos e as matas alagadas da Amazônia, enquanto o habitat do panda são as florestas de bambu das regiões montanhosas na China e no Vietnã.


Nicho ecológico
O nicho é um conjunto de condições em que o indivíduo (ou uma população) vive e se reproduz. Pode se dizer ainda que o nicho é o "modo de vida" de um organismo na natureza. E esse modo de vida inclui tanto os fatores físicos - como a umidade, a temperatura, etc - quanto os fatores biológicos - como o alimento e os seres que se alimentam desse indivíduo.
Vamos explicar melhor: O nicho do Bugio, por exemplo, inclui o que ele come, os seres que se alimentam dele, os organismos que vivem juntos ou próximo dele, e assim por diante. No caso de uma planta, o nicho inclui os sais minerais que ela retira do solo, a parte do solo de onde os retira, a relação com as outras espécies, e assim por diante.
O nicho mostra também como as espécies exploram os recursos do ambiente. Assim a zebra, encontrada nas savanas da África, come as ervas rasteiras, enquanto a girafa, vivendo no mesmo hábitat, come as folhas das árvores. Observe que cada espécie explora os recursos do ambiente de forma um pouco diferente.

População
Indivíduos de uma mesma espécie que vivem em determinada região formam uma população. Por exemplo: as onças do pantanal formam uma população.
As capivaras também podem ser encontradas no pantanal, mas fazem parte de outra população, já que são de outra espécie.
Às vezes a população pode aumentar muito, por exemplo, em meados do século XIX, alguns coelhos selvagens foram levados da Inglaterra para a Austrália, para serem usados nas caçadas. Na Europa, as populações de coelhos eram naturalmente controladas por diversos predadores e parasitas. Na Austrália, porém não existiam tantas espécies que atacavam coelhos. O resultado é que esse animal se reproduziu rapidamente chegando a atingir mais de 200 milhões de indivíduos, que passaram a destruir as plantações e as pastagens da Austrália. Isso mostra o perigo de se introduzir num novo ambiente um organismo não nativo.

Esta é mais uma das questões que a ecologia estuda: "O que faz o número de indivíduos de uma população aumentar, diminuir ou permanecer constante?".
Termos utilizados na Ecologia

Comunidade
Na figura abaixo, podemos perceber que no mar existem diversos animais e vários tipos de plantas. E há também seres muito pequenos - tão pequenos que só podem ser vistos com aparelhos especiais como os microscópios, que possuem lentes especiais que ampliam a imagem dos seres observados.
Se colocarmos uma gota da água do mar no microscópio, veremos um número imenso desses pequenos seres vivos.
Pense quantos organismos diferentes podem ser encontrados num jardim: grama, roseiras, minhocas, borboletas, besouros, formigas, caracóis, sabiás, lagatixas...
Todos os seres vivos de determinado lugar e que mantêm relações entre si formam uma comunidade. A comunidade do mar abaixo é composta por peixes, algas, plantas, os seres microscópios, enfim todas as populações lá existentes.


Ecossistema
É o conjunto dos relacionamentos que a fauna, flora, microorganismos (fatores bióticos) e o ambiente, composto pelos elementos solo, água e atmosfera (fatores abióticos) mantém entre si. Todos os elementos que compõem o ecossistema se relacionam com equilíbrio e harmonia e estão ligados entre si. A alteração de um único elemento causa modificações em todo o sistema podendo ocorrer a perda do equilíbrio existente. Se por exemplo, uma grande área com mata nativa de determinada região for substituída pelo cultivo de um único tipo de vegetal, pode-se comprometer a cadeia alimentar dos animais que se alimentam de plantas, bem como daqueles que se alimentam destes animais.
A delimitação do ecossistema depende do nível de detalhamento do estudo. Por exemplo, se quisermos estudar o ecossistema de um canteiro do jardim ou do ecossistema presente dentro de uma planta como a bromélia.


ou


Termos utilizados na Ecologia

Biosfera
Ainda não temos conhecimento da existência de outro lugar no Universo, atém da Terra, onde aconteça o fenômeno a que chamamos de vida.
A vida na Terra é possível porque a luz do Sol chega até aqui. Graças a sua posição em relação ao Sol, o nosso planeta recebe uma quantidade de energia solar que permite a existência da água em estado líquido, e não apenas em estado sólido (gelo) ou gasoso (vapor). A água é essencial aos organismos vivos. A presença de água possibilita a vida das plantas e de outros seres capazes de produzir alimento a partir da energia solar e permite também, indiretamente, a sobrevivência de todos os outros seres vivos que se alimentam de plantas ou animais. Pela fotossíntese que há a absorção de água e gás carbônico e liberação de oxigênio, a energia do Sol é transformada em um tipo de energia presente nos açucares, que pode então ser aproveitada por seres que realizam esse processo e por outros seres a eles relacionados na busca por alimento.
A Terra pode ser dividida assim:
  • Litosfera - a parte sólida formada a partir das rochas;
  • Hidrosfera - conjunto total de água do planeta (seus rios, lagos, oceanos);
  • Atmosfera - a camada de ar que envolve o planeta;
  • Biosfera - as regiões habitadas do planeta.
Biosfera é o conjunto de todos os ecossistemas da Terra. É um conceito da Ecologia, relacionado com os conceitos de litosfera, hidrosfera e atmosfera. Incluem-se na biosfera todos os organismos vivos que vivem no planeta, embora o conceito seja geralmente alargado para incluir também os seus habitats.


A biosfera inclui todos os ecossistemas que estão presentes desde as altas montanhas (até 10.000 m de altura) até o fundo do mar (até cerca de 10.000 m de profundidade).
Nesse diferentes locais, as condições ambientais também variam. Assim, a seleção natural atua de modo diversificado sobre os seres vivos em cada região. Sob grandes profundidades no mar, por exemplo, só sobrevivem seres adaptados à grande pressão que a água exerce sobre eles e a baixa (ou ausente) luminosidade. Já nas grandes altitudes montanhosas, sobrevivem seres adaptados a baixas temperaturas e ao ar rarefeito.
Na biosfera, portanto, o ar, a água, o solo, a luz são fatores diretamente relacionados à vida.

Os Principais Ecossistemas Brasileiros

O Brasil possui uma grande diversidade de ecossistemas. Quase todo o seu território está situado na zona tropical. Por isso, nosso país recebe grande quantidade de calor durante todo o ano, o que favorece essa grande diversidade. Veja, no mapa a seguir, exemplos dos principais ecossistemas encontrados no Brasil.


Floresta Amazônica
Estende-se além do território nacional, com chuvas frequentes e abundantes. Apresenta flora exuberante, com espécies, como a seringueira, o guaraná, a vitória-régia, e é habitada por inúmeras espécies de animais, como o peixe-boi, o boto, o pirarucu, a arara. Para termos uma idéia da riqueza da biodiversidade desses ecossistemas, ele apresenta, até o momento, 1,5 milhão de espécies de vegetais identificadas por cientistas.


Peixe boi e seringueira

Mata de cocais
A mata de cocais situa-se entre a floresta amazônica e a caatinga. São matas de carnaúba, babaçu, buriti e outras palmeiras. Vários tipos de animais habitam esse ecossistema, como a araracanga e o macaco cuxiú.


Araracanga
Pantanal mato-grossense

Localizado na região Centro-Oeste do Brasil, engloba parte dos estados do Mato Grosso e do Mato Grosso do Sul. Área que representa a terra úmida mais importante e conhecida do mundo (maior planície alagável do planeta), com espantosos índices de biodiversidade animal. Sofre a influência de diversos ecossistemas, como o cerrado, a floresta Amazônica, a mata Atlântica, assim como os ciclos de seca e cheia, e de temperaturas elevadas. São 140 mil quilômetros quadrados só no Brasil, equivalente a 5 Bélgicas ou ao território de Portugal. É onde vivem jacarés - cerca de 32 milhões - , 365 espécies de aves, 240 de peixes, 80 de mamíferos e 50 de répteis. Mais de 600.000 capivaras habitam a região. O pantanal é escolhido como pouso de milhões de pássaros, entre eles o tuiuiús, a ave-símbolo da região. Os cervos-do-pantanal, bem mais raros, também fazem parte da fauna local.



Campos sulinos
Os campos sulinos são  formações campestres encontradas no sul do país, passando do interior do Paraná e Santa Catarina até o sul do Rio Grande do Sul. Os campos sulinos são conhecidos como pampas, termo de origem indígena que significa "regiões planas". Em geral, há predomínio das gramíneas, plantas conhecidas como grama ou relva. Animais como o ratão-do-banhado, preá e vários tipos de cobras são ali encontrados.


Campos sulinos e ratão do banhado.

Caatinga
A caatinga localiza-se na maior parte da região Nordeste. No longo período da seca, a vegetação perde as folhas e fica esbranquiçada. Esse fato originou o nome caatinga que na língua tupi, significa "mata branca". Os cactos, como o mandacaru, o xique-xique e outras plantas, são típicos da caatinga. A fauna inclui as cobras cascavel e jibóia, o gambá, a gralha, o veado-catingueiro etc.


Cascavel e mandacaru
Restinga
A restinga é típica do litoral brasileiro. Os seres que habitam esse ecossistema vivem em solo arenoso, rico em sais. Parte desse solo fica submersa pela maré alta. Encontramos nesse ecossistema animais como maria-farinha, besourinho-da-praia, viúva-negra, gavião-se-coleira, coruja-buraqueira, tiê-sangue e perereca, entre outros. Como exemplos de plantas características da restinga podemos citar: sumaré, aperta-goéla, açucena, bromélias, cactos, coroa-de-frade, aroeirinha, jurema e taboa.


maria-farinha e coroa-de-frade

Manguezal
A costa brasileira apresenta, desde o Amapá até Santa Catarina, uma estreita floresta chamada manguezal, ou mangue. Esse ecossistema desenvolve-se, principalmente, no estuário e na foz dos rios, onde há água salobra e local parcialmente abrigado da ação das ondas, mas aberto para receber a água do mar. Os solos são lodosos e ricos em nutrientes. Os manguezais são abrigos e berçários naturais de muitas espécies de caranguejos, peixes e aves. Apresentam um pequeno número de espécies de árvores, que possuem raízes-escoras. Essas raízes são assim chamadas por serem capazes de fixar as plantas em solo lodoso.


raízes escoras

Cerrado
O cerrado ocorre principalmente na região Centro-Oeste. A vegetação é composta de arbustos retorcidos e de pequeno porte, sendo as principais espécies: o araçá, o murici, o buriti e o indaiá. É o habitat do lobo-guará, do tamanduá-bandeira, da onça-pintada etc.


Buriti


Tamanduá-bandeira

Mata Atlântica
Esse ecossistema estende-se da região do Rio Grande do Norte até o sul do país. Apresenta árvores altas e vegetação densa, pouco espaço vazio. É uma das áreas de maior diversidade de seres vivos do planeta. Encontra-se plantas como o pau-brasil, o ipê-roxo, o angico, o manacá-da-serra e o cambuci e várias espécies de animais, como a onça pintada, a anta, o queixada, o gavião e o mico-leão-dourado.

Mata de araucária

A mata de araucária situa-se na região sub-tropical, no sul do Brasil, de temperaturas mais baixas. Entre outros tipos de árvores abriga o pinheiro-do-paraná, também conhecido como araucária. Da sua fauna destacamos, além da ema, a maior ave das Américas, a gralha-azul, o tatu, o quati e o gato-do-mato.


Relações ecológicas
Em um ecossistema, os seres vivos relacionam-se com o ambiente físico e também entre si, formando o que chamamos de relações ecológicas.
As relações ecológicas ocorrem dentro da mesma população (isto é, entre indivíduos da mesma espécie), ou entre populações diferentes (entre indivíduos de espécies diferentes). Essas relações estabelecem-se na busca por alimento, água, espaço, abrigo, luz ou parceiros para reprodução.

A seguir veremos alguns exemplos desses tipos de relações.

Relações Harmônicas (relações positivas)

Intra-específica (entre indivíduos da mesma espécie)

Sociedade
União permanente entre indivíduos em que há divisão de trabalho. Ex.: insetos sociais (abelhas, formigas e cupins)
O que mais chama a atenção em uma colméia é a sua organização. Todo o trabalho é feito por abelhas que não se reproduzem, as operárias. Elas se encarregam de colher o néctar das flores, de limpar e defender a colméia e de alimentar as rainhas e as larvas (as futuras abelhas) com mel, que é produzido a partir do néctar.
A rainha é a única fêmea fértil da colméia coloca os ovos que irão originar outras operárias e também os zangões (os machos), cuja única função é fecundar a rainha.
Portanto, uma sociedade é composta por um grupo de indivíduos da mesma espécie que vivem juntos de forma a permanente e cooperando entre si.
Entre os mamíferos também encontramos vários exemplos de sociedades, como os dos castores, a dos gorilas, a dos babuínos e a da própria espécie humana. A divisão de trabalho não é tão rigorosa quanto as abelhas, mas também há varias formas de cooperação. É comum, por exemplo, um animal soltar um grito de alarme quando vê um predador se aproximar do grupo; ou mesmo um animal dividir alimento com outros.


Colônia
Associação anatômica formando uma unidade estrutural e funcional. Ex.: coral-cérebro, caravela.
Colônia é um grupo de organismos da mesma espécie que formam uma entidade diferente dos organismos individuais. Por vezes, alguns destes indivíduos especializam-se em determinadas funções necessárias à colônia. Um recife de coral, por exemplo, é construído por milhões de pequenos animais (pólipos) que secretam à sua volta um esqueleto rígido. A garrafa-azul (Physalia) é formada por centenas de pólipos seguros a um flutuador, especializados nas diferentes funções, como a alimentação e a defesa; cada um deles não sobrevive isolado da colônia.
As bactérias e outros organismos unicelulares também se agrupam muitas vezes dentro de um invólucro mucoso.
As abelhas e formigas, por outro lado, diferenciam-se em rainha, zangão com funções reprodutivas e as obreiras (ou operárias) com outras funções, mas cada indivíduo pode sobreviver separadamente. Por isso, estas espécies são chamadas eusociais, ou seja, formam uma sociedade e não uma colônia.



Interespecífica (entre indivíduos de espécies diferentes)

Mutualismo
Associação obrigatória entre indivíduos, em que ambos se beneficiam. Ex.: líquen, bois e microorganismos do sistema digestório.
Abelhas, beija-flores e borboletas são alguns animais que se alimentam do néctar das flores. O néctar é produzido na base das pétalas das flores e é um produto rico em açucares.  Quando abelhas, borboletas e beija-flores colhem o néctar, grãos de pólen se depositam em seu corpo. O pólen contém células reprodutoras masculinas da planta. Pousando em outra flor, esses insetos deixam cair o pólen na parte feminina da planta. As duas células reprodutoras - a masculina e a feminina - irão então se unir e dar origem ao embrião (contido dentro da semente). Perceba que existe uma relação entre esses insetos e a planta em que ambos lucram. Esse tipo de relação entre duas espécies diferentes e que traz benefícios para ambas é chamada mutualismo. Os animais polinizadores obtêm alimento e a planta se reproduz.
Outro exemplo, é os liquens, associação mutualística entre algas e fungos. Os fungos protegem as algas e fornecem-lhes água, sais minerais e gás carbônico, que retiram do ambiente. As algas, por sua vez, fazem a fotossíntese e, assim, produzem parte do alimento consumido pelos fungos.


Liquens e polinizadores
Relações Ecológicas

Interespecífica (entre indivíduos de espécies diferentes)

Comensalismo
Associação em que um indivíduo aproveita restos de alimentares do outro, sem prejudicá-lo. Ex.: Tubarão e Rêmoras, Leão e a Hiena, Urubu e o Homem.

Tubarão e Peixe Rêmora – O tubarão é reconhecidamente o maior predador dos mares, ou seja, o indivíduo que normalmente ocupa o ápice da cadeia alimentar no talassociclo.  Já o peixe-rêmora é pequeno e incapaz de realizar a façanha do predatismo.  O peixe-rêmora vive então associado ao grande tubarão, preso em seu ventre através de uma ventosa (semelhante a um disco adesivo). Enquanto o tubarão encontra uma presa, estraçalhando-a e devorando-a, a rêmora aguarda pacientemente, limitando-se a comer apenas o que o grande tubarão não quis. Após a refeição, o peixe-rêmora busca associar-se novamente a outro tubarão faminto.Para a rêmora a relação é benéfica, já para o tubarão é totalmente neutra.

Leão e a Hiena – os leões são grandes felinos e ferozes caçadores típicos das savanas africanas.  Eles vivem em bandos e passam a maior parte do dia dormindo (cerca de 20 horas, segundo alguns etologistas).  Entretanto são caçadores situando-se, a exemplo dos tubarões, no ápice da cadeia alimentar.  As hienas são pequenas canídeas que também se agrupam em bandos, mas que vivem a espreita dos clãs dos leões.  Quando os leões estão caçando, as hienas escondem-se esperando que todo o grupo de felinos se alimente.  As hienas aguardam apenas o momento em que os leões abandonam as carcaças das presas para só assim se alimentarem.
Urubu e o Homem - O urubu ou abutre (nomes vulgares que variam de acordo com a localização, mas que na verdade representam aves com o mesmo estilo de vida) é um comensal do homem.  O homem é o ser da natureza que mais desperdiça alimentos. Grande parte dos resíduos sólidos das grandes cidades é formado por materiais orgânicos que com um tratamento a baixos custos retornariam à natureza de forma mais racional.  O urubu é uma grande ave que se vale exatamente deste desperdício do homem em relação aos restos de alimentos.


Protocooperação
Associação facultativa entre indivíduos, em que ambos se beneficiam. Ex.: Anêmona do Mar e paguro, gado e anum (limpeza dos carrapatos), crocodilo africano e ave palito (higiene bucal).
Às margens do rio Nilo, na África, os ecólogos perceberam a existência de um singular exemplo de protocooperação entre os perigosos crocodilos e o sublime pássaro-palito.  Durante a sesta os gigantescos crocodilos abrem sua boca permitindo que um pequeno pássaro (o pássaro-palito) fique recolhendo restos alimentares e pequenos vermes dentre suas poderosas e fortes presas.  A relação era tipicamente considerada como um exemplo de comensalismo, pois para alguns apenas o pássaro se beneficiava.  Entretanto, a retirada de vermes parasitas faz do crocodilo um beneficiado na relação, o que passa a caracterizar a protocooperação.
Outro exemplo é do boi e do anum. Os bois e vacas são comumente atacados por parasitas externos (ectoparasitas), pequenos artrópodes conhecidos vulgarmente por carrapatos.  E o anum preto (Crotophaga ani) tem como refeição predileta estes pequenos parasitas.  A relação é benéfica para ambos (o boi se livra do parasita e o anum se alimenta).



Bernardo-eremita e Anemôna-do-mar - O bernardo-eremita é um crustáceo do gênero Pagurus cuja principal característica é a de possuir a região abdominal frágil, em razão do exoesqueleto não possuir a mesma resistência do cefalotórax.  Este crustáceo ao atingir a fase adulta (ainda em processo de crescimento, portanto realizando as mudas) procura uma concha de molusco gastrópode (caramujo) abandonada, e instala-se dentro desta.  De certa forma o crustáceo permanece protegido.  Entretanto, alguns predadores, ainda assim conseguem retirar o Pagurus de dentro da concha.  É aí que entra a anêmona-do-mar, um cnidário.  Como todos os cnidários (ou celenterados), a anêmona-do-mar é dotada de estruturas que liberam substâncias urticantes com a finalidade de defender-se.  A associação beneficia tanto a anêmona quanto o Bernardo: o Bernardo consegue proteção quando uma anêmona se instala sobre sua concha (emprestada), pois nenhum predador chega perto.  Já a anêmona beneficia-se porque seu “cardápio” alimentar melhora bastante quando de “carona” na concha do Bernardo.  A anêmona normalmente faz a captação de seus alimentos (partículas) através de seus inúmeros tentáculos, esperando que estes passem por perto.  Na carona do Bernardo há um significativo aumento no campo de alimentação para a anêmona.


Eremita com anêmona grudada em sua concha.

elações Ecológicas

Canibalismo
Relação desarmônica em que um indivíduo mata outro da mesma espécie para se alimentar. Ex.: louva-a-Deus, aracnídeos, filhotes de tubarão no ventre materno.
Louva-a-deus – o louva-a-deus é um artrópode da classe dos insetos (família Mantoideae).  Este inseto é verde e recebe este nome por causa da posição de suas patas anteriores, juntas com tarsos dobrados, como se estivesse rezando.  Neste grupo de insetos o canibalismo é muito comum, principalmente no que tange o processo reprodutivo.  É hábito comum as fêmeas devorarem os machos numa luta que antecede a cópula.



Galináceos jovens – os jovens pintinhos com dias de nascidos, quando agrupados em galpões não suficientemente grandes para abrigá-los podem, ocasionalmente apresentar canibalismo, como uma forma de controlar o tamanho da população.


Amensalismo
Relação em que indivíduos de uma espécie produzem toxinas que inibem ou impedem o desenvolvimento de outras. Ex.: Maré vermelha, cobra (veneno) e homem, fungo penicillium (penicilina) e bactérias.
A Penicilina foi descoberta em 1928 quando Alexander Fleming, no seu laboratório no Hospital St Mary em Londres, reparou que uma das suas culturas de Staphylococcus tinha sido contaminada por um bolor Penicillium, e que em redor das colônias do fungo não havia bactérias. Ele demonstrou que o fungo produzia uma substância responsável pelo efeito bactericida, a penicilina.
A Maré vermelha é a proliferação de algumas espécies de algas tóxicas. Muitas delas de cor avermelhada, e que geralmente ocorre ocasionalmente nos mares de todo o planeta. Encontramos essas plantas apenas no fundo do mar. Em situações como mudanças de temperatura, alteração na salinidade e despejo de esgoto nas águas do mar, elas se multiplicam e sobem à superfície, onde liberam toxinas que matam um grande número de peixes, mariscos e outros seres da fauna marinha.

Quando isso acontece, grandes manchas vermelhas são vistas na superfície da água. Os seres contaminados por essas toxinas tornam-se impróprios para o consumo humano.

Maré vermelha

Sinfilia
Indivíduos mantém em cativeiro indivíduos de outra espécie, para obter vantagens. Ex.: formigas e pulgões.
Os pulgões são parasitas de certos vegetais, e se alimentam da seiva elaborada que retiram dos vasos liberinos das plantas. A seiva elaborada é rica em açúcares e pobre em aminoácidos. Por absorverem muito açúcar, os pulgões eliminam o seu excesso pelo ânus. Esse açúcar eliminado é aproveitado pelas formigas, que chegam a acariciar com suas antenas o abdômen dos pulgões, fazendo-os eliminar mais açúcar. As formigas transportam os pulgões para os seus formigueiros e os colocam sobre raízes delicadas, para que delas retirem a seiva elaborada. Muitas vezes as formigas cuidam da prole dos pulgões para que no futuro, escravizando-os, obtenham açúcar. Quando se leva em consideração o fato das formigas protegerem os pulgões das joaninhas, a interação é harmônica, sendo um tipo de protocooperação.


Predatismo
Relação em que um animal captura e mata indivíduos de outra espécie para se alimentar. Ex.: cobra e rato, homem e gado.
Todos os carnívoros são animais predadores. É o que acontece com o leão, o lobo, o tigre, a onça, que caçam veados, zebras e tantos outros animais.
O predador pode atacar e devorar também plantas, como acontece com o gafanhoto, que, em bandos, devoram rapidamente toda uma plantação. Nos casos em que a espécie predada é vegetal, costuma-se dar ao predatismo o nome de herbivorismo.
Raros são os casos em que o predador é uma planta. As plantas carnívoras, no entanto, são excelentes exemplos, pois aprisionam e digerem principalmente insetos.
O predatismo é uma forma de controle biológico natural sobre a população da espécie da presa. Embora o predatismo seja desfavorável à presa como indivíduo, pode favorecer a sua população, evitando que ocorra aumento exagerado do número de indivíduos, o que acabaria provocando competição devido à falta de espaço, parceiro reprodutivo e alimento.  No entanto ao diminuir a população de presas é possível que ocorra a diminuição dos predadores por falta de comida. Em conseqüência, a falta de predadores pode provocar um aumento da população de presas. Essa regulação do controle populacional colabora para a manutenção do equilíbrio ecológico.

Relações Ecológicas

Parasitismo: Indivíduos de uma espécie vivem no corpo de outro, do qual retiram alimento. Ex.: Gado e carrapato, lombrigas e vermes parasitas do ser humano.
A lombriga é um exemplo de parasita. É um organismo que se instala no corpo de outro (o hospedeiro) para extrair alimento, provocando-lhes doenças. Os vermes parasitas fazem a pessoa ficar mal nutrida e perder peso. Em crianças, podem prejudicar até o crescimento.
As adaptações ao parasitismo são assombrosas - desde a transformação das probóscides dos mosquitos num aparelho de sucção, até à redução ou mesmo desaparecimento de praticamente todos os órgãos, com exceção dos órgãos da alimentação e os reprodutores, como acontece com as tênias e lombrigas.


Lombriga (Ascaris lumbricoides) e mosquito

Competição Interespecífica: Disputa por recursos escassos no ambiente entre indivíduos de espécies diferentes. Ex.: Peixe Piloto e Rêmora (por restos deixados pelo tubarão)
Tanto o Peixe Piloto quanto a Rêmora comem os restos deixados pelos tubarões por tanto possuem o mesmo nicho ecológico e acabam disputando por espaço nele.

Peixe piloto e rêmora em volta do tubarão

Os planetas
Os planetas não produzem luz, apenas refletem a luz do Sol, que é a estrela do Sistema Solar.
Teorias afirmam que os planetas também foram formados a a partir de porções de massa muito quente e que todos estão de resfriando. Alguns, entre eles a Terra, já se resfriaram o suficiente para apresentar a superfície sólida.
Um corpo celeste é considerado um planeta quando, além de não ter luz própria, gira ao redor de uma estrela.
Os planetas têm forma aproximadamente esférica. Os seus movimentos principais são o de rotação e o de translação.  Cada planeta possui um eixo de rotação em relação a Sol, o mais inclinado deles é o planeta-anão Plutão, pois seu eixo de rotação em relação ao Sol é de 120º, olhe a figura.



Movimento de Rotação
No movimento de rotação, os planetas giram em torno do seu próprio eixo, uma linha imaginária que passa pelo seu centro. O observador terrestre tem dificuldade de perceber o movimento de rotação da Terra. Para isso deve-se notar que o Sol, do amanhecer ao anoitecer, parece se mover da região leste em sentido oeste. O mesmo acontece, à noite, com a Lua, as estrelas e demais astros que vemos no céu.
O movimento de rotação da Terra dura, aproximadamente 24horas - o que corresponde a um dia. A Terra, por ser esférica, não é iluminada toda de uma vez só. Conforme a Terra gira em torno do seu eixo, os raios de luz solar incidem sobre uma parte do planeta e a outra fica à sombra.
O ciclo do dia e da noite ocorrem graças a rotação. Enquanto o planeta está girando sobre seu próprio eixo é dia nas regiões que estão iluminadas pelo Sol (período claro) e, simultaneamente, é noite nas regiões não iluminadas (período escuro).




Movimento de Translação
O movimento de translação é executado pelos planetas ao redor do Sol, e o tempo que levam para dar uma volta completa é denominado período orbital. No caso da Terra esse período leva cerca de 365 dias e aproximadamente 6 horas para se completar. A Terra, no seu movimento de translação, forma uma elipse pouco alongada (bem próxima a circular). Já o planeta Netuno traça a sua órbita elíptica de forma bastante alongada.
Em razão do movimento de translação e da posição de inclinação do eixo da Terra, cada hemisfério fica, alternadamente, mais exposto aos raios solares durante um período do ano. Isso resulta nas quatro estações do ano: verão, outono, inverno e primavera. Nos meses de dezembro a março, o Hemisfério Sul - localizado ao sul da linha do Equador - fica mais exposto ao Sol. É quando os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Sul. É verão nesse hemisfério. Depois de seis meses, nos meses de junho a setembro, a Terra já percorreu metade da sua órbita. O Hemisfério Norte - localizado ao norte da linha do Equador - fica mais exposto ao Sol e, assim, os raios solares incidem perpendicularmente sobre pelo menos alguns pontos do Hemisfério Norte. É verão no Hemisfério Norte.



Enquanto é verão no Hemisfério Norte com os dias mais longos e as noites mais curtos, é inverno no Hemisfério Sul, onde os dias tornam-se mais curtos e as noites mais longas. E vice-e-versa.
Em dois períodos do ano (de março a junho e de setembro a dezembro) ha posições da Terra, na sua órbita, em que os dois hemisférios são iluminados igualmente. É quando ocorrem, de forma alternada nos dois hemisférios, as estações climáticas primavera e outono.
As estações do ano são invertidas entre os hemisférios Sul e Norte. Por isso é possível, numa mesma época do ano, por exemplo, pessoas aproveitarem o verão numa praia no Hemisfério Sul, enquanto outras se agasalharem por causa de uma nevasca de inverno no Hemisfério Norte.
Nas regiões perto da linha do Equador, tanto em um hemisfério quanto no outro, ocorre constantemente a incidência dos raios do Sol, faz calor durante todo o ano. Há apenas a estação das chuvas e a estação da seca.
Em virtude da "curvatura da Terra" e da inclinação do eixo de rotação da Terra em relação ao seu plano de órbita, os pólos recebem raios de Sol bastante inclinados. Por um longo período do ano, os raios solares não chegam aos pólos; por isso essas são regiões muito frias.
Para os moradores dessas regiões, só há duas estações climáticas:
  • Uma que chamam inverno, ou seja, o longo período em que os raios solares não atingem o pólo;
  • outra chamada verão, quando não acontece o pôr-do-sol durante meses.
Os planetas do Sistema Solar

São oito os planetas clássicos do Sistema Solar. Na ordem de afastamento do Sol, são eles: Mercúrio, Vênus, Terra, Marte, Júpiter, Saturno, Urano e Netuno.
A partir dos avanços tecnológicos que possibilitaram a observação do céu com instrumentos ópticos como lunetas, telescópios e outros, os astrônomos vêm obtendo informações cada vez mais precisas sobre os planetas e seus satélites. Vamos conhecer um pouco a respeito de cada um desses oito planetas do Sistema Solar.



Mercúrio

É o planeta mais próximo ao Sol e o menor do Sistema Solar. É rochoso, praticamente sem atmosfera, e a sua temperatura varia muito, chegando a  mais de 400ºC positivos, no lado voltado para o Sol, e cerca de 180ºC negativos, no lado oposto. Mercúrio não tem satélite. É o planeta que possui um movimento de translação de maior velocidade (o ano mercuriano tem apenas 88 dias). O aspecto da superfície é parecido com o da nossa Lua, toda coberta de crateras, originadas da colisão com corpos celestes.


Vênus

Vênus é conhecido como Estrela-D'Alva ou Estrela da tarde por causa de seu brilho e também porque é visível ao amanhecer e ao anoitecer, conforme a época do ano (mas lembre-se que ela é um planeta e não uma estrela).
É o segundo planeta mais próximo do Sol e o planeta mais próximo da Terra. As perguntas intrigantes que este planeta "gêmeo" da Terra nos coloca começam com o seu movimento de rotação própria. Uma rotação completa sobre si mesmo demora 243.01 dias, o que é um período invulgarmente longo. Além disso, enquanto que a maior parte dos planetas rodam sobre si próprios no mesmo sentido, Vênus é uma das exceções. Tal como Urano e Plutão, a sua rotação é retrógrada, o que significa que em Vênus o Sol nasce a leste e põe-se a oeste.
Vênus é um planeta muito parecido com a Terra, em tamanho, densidade e força da gravidade à superfície, tendo-se chegado a especular sobre se teria condições favoráveis à vida. Além disso, suas estruturas são muito parecidas: um núcleo de ferro, um manto rochoso e uma crosta. Hoje sabemos que, apesar de ter tido origens muito semelhantes à Terra, a sua maior proximidade ao Sol levou a que o planeta desenvolvesse um clima extremamente hostil à vida. De fato, Vênus é o planeta mais quente do sistema solar, sendo mesmo mais quente do que Mercúrio, que está mais próximo do Sol. A sua temperatura média à superfície é de 460ºC devido ao forte efeito de estufa que acontece em grande escala em todo o planeta e não apresenta água.




Terra

É o terceiro planeta mais próximo do Sol. É rochoso e a sua atmosfera é composta de diferentes tipos de gases, e a sua temperatura média é de aproximadamente 15ºC.
A Terra, até o que se sabe, é o único planeta do Sistema Solar que apresenta condições que possibilitam a existência de seres vivos como os conhecemos. Tem um satélite, a Lua.

Marte

Visto da Terra parece um planeta vermelho, embora na verdade seja mais acastanhado. O seu eixo de rotação tem uma inclinação muito semelhante à do nosso planeta, 25.19º, o que significa que tem estações do ano. Ao contrário de Mercúrio, que está demasiado perto do Sol para que seja facilmente observado, e de Vênus, cuja densa atmosfera e cobertura de nuvens bloqueiam a observação da sua superfície, Marte está relativamente próximo da Terra sem estar muito próximo do Sol, e tem uma atmosfera muito rarefeita e na maior parte formada por gás carbônico, o que nos permite observar a sua superfície com relativa facilidade. Seu período de rotação é aproximadamente 24h, muito parecido com o da Terra, porém sua translação dura cerca de 687 dias.

Satélites de Marte
Marte tem ainda duas luas chamadas Deimos e Phobos, que no entanto têm formas irregulares. Têm um tamanho da ordem dos 10 km e assemelham-se mais a asteróides do que a pequenos planetas.


Água em Marte? E daí?
Por mais de um século, os astrônomos especularam se Marte teria água. Em 2010, uma pequena nave robótica enviada pelos Estados Unidos, a Opportunity, transmitiu a resposta em forma de fotos da superfície marciana: bolhas e ranhuras microscópicas claramente visíveis em algumas pedras demonstram que elas já estiveram submersas em água. Se foi assim, é possível que tenha existido vida no planeta vermelho. A suposição baseia-se num fato científico: água líquida é a única substância vital para a existência dos seres vivos na forma como os conhecemos. A denominação pode parecer redundante, mas é precisa. Pelo que se sabe, em estado gasoso ou sólido a substância não serve para a vida. O processo bioquímico que gerou a vida na Terra, há 3,5 bilhões de anos, só poderia ter ocorrido num meio fluido. No líquido, as moléculas se dissolvem e as reações químicas acontecem. Como estão sempre em fluxo, os líquidos transportam nutrientes e material genético de um lugar para outro, seja dentro de uma célula, de um organismo, de um ecossistema ou até de um planeta.
Hoje em dia, contudo, Marte não exibe condições que permitam água no estado líquido à sua superfície. Por um lado, a pressão da atmosfera atual do planeta à superfície é muito baixa: 0.0063 vezes a pressão da atmosfera à superfície da Terra, e quanto menor é a pressão, mais baixa é a temperatura necessária para a água passar do estado líquido para o gasoso. Por outro lado, a sua atmosfera muito rarefeita não fornece um mecanismo eficaz de efeito estufa e a temperatura média em Marte é de -53ºC, oscilando entre máximos de 20ºC e mínimos de -140ºC. Feitas as contas, as combinações possíveis de temperatura e pressão à superfície de Marte não permitem água no estado líquido, apenas no estado sólido ou no gasoso.

Júpiter

A massa de Júpiter é duas vezes e meia a massa combinada de todos os outros corpos do sistema solar à exceção do Sol.
Júpiter é o maior planeta do sistema solar, e o primeiro dos gigantes gasosos. Tem um diâmetro 11 vezes maior que o diâmetro da Terra e uma massa 318 vezes superior. Demora quase 12 anos a completar uma órbita mas tem um período de rotação invulgarmente rápido: 9h 50m 28s sendo o planeta com a rotação mais rápida do sistema solar. Embora tenha um núcleo de ferro, quase todo o planeta é uma imensa bola de hidrogênio e um pouco de hélio. A temperatura da superfície é de cerca de -150ºC.


As sondas Voyager 1 e 2 mostraram que Júpiter também possui anéis, tal como os outros gigantes gasosos. No entanto, se para observarmos os anéis de Saturno basta um telescópio amador uma vez que estes são constituídos principalmente por pequenos detritos de gelo que refletem muito a luz, os anéis de Júpiter parecem-nos quase invisíveis, uma vez que são compostos por partículas rochosas de pequenas dimensões que refletem muito pouco a luz. Julga-se que estes detritos são o resultado de colisões de meteoritos com os 4 satélites mais próximos do planeta.

Os satélites
Júpiter tem pelo menos 63 satélites identificados. Os 4 maiores, e mais importantes, são conhecidos como as luas galileanas, assim chamadas por terem sido descobertas por Galileu Galilei (1564-1642) quando observou Júpiter com um telescópio que ele próprio construiu. São elas: Io, Europa, Ganymede e Callisto. Historicamente, a descoberta destas luas constituiu uma das primeiras provas irrefutáveis que a Terra não estava no centro do Universo.

Saturno


Foto de Saturno feita pela sonda espacial Cassini, quando estava a cerca de 57 milhões de quilômetros de Saturno (foto NASA).

É o segundo maior planeta do nosso sistema solar. É famoso por seus anéis, que podem ser vistos com o auxílio de pequenos telescópios. Os anéis são feitos com pedaços de gelo e rochas. A temperatura média da superfície do planeta é de -140ºC. Saturno é formado basicamente por hidrogênio e pequena quantidade de hélio.
O movimento de rotação em volta do seu eixo demora cerca de 10,5 horas, e cada revolução ao redor do Sol leva 30 anos terrestres.
Tem um número elevado de satélites, 60 descobertos até então, dos quais 35 possuem nomes, e está cercado por um complexo de anéis concêntricos, composto por dezenas de anéis individuais separados por intervalos, estando o mais exterior destes situado a 138 000 km do centro do planeta geralmente compostos por restos de meteoros e cristais de gelo. Alguns deles têm o tamanho de uma casa.



Urano

Urano é o sétimo planeta do sistema solar, situado entre Saturno e Netuno. A característica mais notável de Urano é a estranha inclinação do seu eixo de rotação, quase noventa graus em relação com o plano de sua órbita; essa inclinação não é somente do planeta, mas também de seus anéis, satélites e campo magnético. Urano tem a superfície a mais uniforme de todos os planetas por sua característica cor azul-esverdeada, produzida pela combinação de gases em sua atmosfera, e tem anéis que não podem ser vistos a olho nu; além disso, tem um anel azul, que é uma peculiaridade planetária. Urano é um de poucos planetas que têm um movimento de rotação retrógrado, similar ao de Vênus
Tem 27 satélites ao seu redor e um fino anel de poeira.



Netuno

Orbitando tão longe do Sol, Netuno recebe muito pouco calor. A sua temperatura superficial média é de -218 °C. No entanto, o planeta parece ter uma fonte interna de calor. Pensa-se que isto se deve ao calor restante, gerado pela matéria em queda durante o nascimento do planeta, que agora irradia pelo espaço fora.
A atmosfera de Netuno tem as mais altas velocidades de ventos no sistema solar, que são acima de 2000 km/h; acredita-se que os ventos são amplificados por este fluxo interno de calor. A estrutura interna lembra a de Urano - um núcleo rochoso coberto por uma crosta de gelo, escondida no profundo de sua grossa atmosfera. Os dois terços internos de Netuno são compostos de uma mistura de rocha fundida, água, amônia líquida e metano. A terça parte exterior é uma mistura de gases aquecidos composta por hidrogênio, hélio, água e metano.
Embora não sejam visíveis nas fotografias do telescópio espacial Hubble, Netuno faz parte dos planetas gigantes que possuem um complexo sistema de anéis. Possui cinco anéis principais e sua descoberta se deve a uma observação efetuada ainda em 1984 a bordo de um avião U2 que acompanhou o deslocamento do planeta por algumas horas durante a ocultação de uma estrela. Neptuno tem 13 luas conhecidas. A maior delas é Tritão, descoberta por William Lassell apenas 17 dias depois da descoberta de Netuno.


Netuno, o gigante azul


E Plutão?

Plutão que recebera o nome do deus dos infernos, da mitologia greco-latina, foi classificado como o nono planeta do Sistema Solar. Descoberto em 1930, pelo astrônomo norte-americano Clyde Tombaugh, esse astro foi sempre motivo de acirrados debates. Afinal, as características do planetóide, entre outras a excentricidade de sua órbita inclinada, em que certos períodos cruza a órbita de Netuno, já indicavam que dificilmente ela poderia permanecer na elite dos planetas do nosso Sistema. Realmente, 76 anos depois, a UAI resolveu reclassificar o astro do grupo de planetas-anões.
Caronte continua a ser considerado satélite de Plutão. Entretanto, para alguns astrônomos eles são astros gêmeos, e esse é um debate que pode ser, a qualquer momento retomado pela União Astronômica Internacional. Será Coronte promovido a planeta-anão?


Plutão e seu satélite Caronte
Outros astros do Sistema Solar

Satélites
Até 1610 o único satélite conhecido era o da Terra - a Lua. Naquela ocasião, Galileu Galilei (1564-1642), com a sua luneta, descobriu satélites na órbita do planeta Júpiter. Hoje se sabe da existência de dezenas de satélites.
Na Astronomia, satélite natural é um corpo celeste que se movimenta ao redor de um planeta graças a força gravitacional. Por exemplo, a força gravitacional da Terra mantém a Lua girando em torno do nosso planeta.
Os satélites artificiais são objetos construídos pelos seres humanos. O primeiro satélite artificial foi lançado no espaço em 1957. Atualmente há vários satélites artificiais ao redor da Terra.
O termo "lua" pode ser usado como sinônimo de satélite natural dos diferentes planetas.




Cometas


Cometa Halley

Um cometa é o corpo menor do sistema solar, semelhante a um asteróide, possui uma parte sólida, o núcleo, composto por rochas, gelo e poeira e têm dimensões variadas (podendo ter alguns quilômetros de diâmetro). Geralmente estão distantes do Sol e, nesse caso, não são visíveis. Eles podem se tornar visíveis à medida que, na sua longa trajetória, se aproximam do Sol sublimando o gelo do núcleo e liberando gás e poeira para formar a cauda e a "cabeleira" em volta do núcleo. O mais conhecido dele é o Halley, que regularmente passa pelo nosso Sistema Solar. De 76 em 76 anos, em média, ele é visível da Terra. Ele passou pela região do Sistema Solar próxima do nosso planeta, em 1986, o que possibilitou a sua visibilidade, portanto, o Halley deverá estar de volta em 2062.




Asteróides
Um asteróide é um corpo menor do sistema solar, geralmente da ordem de algumas centenas de quilômetros apenas. São milhões de corpos rochosos que giram ao redor do Sol. Da Terra, só podem ser observados por meio de telescópio. Entre as órbitas dos planetas Marte e Júpiter, encontra-se um cinturão de asteróides e outro após a órbita de Netuno.




Meteoróides, meteoros e meteoritos



São fragmentos de rochas que se formam apartir de cometas e asteróides. O efeito luminoso é produzido quando fragmentos de corpos celestes incendeiam-se em contato com a atmosfera terrestre devido ao atrito. Esses rastros de luz são denominados meteoros e popularmente são conhecidos como estrelas cadentes, mas não são estrelas.
Quando caem sobre a Terra, atraídos pela força gravitacional, são chamados de meteoritos. Na maioria das vezes, eles são fragmentos de rochas ou de ferro. Os meteoritos tem forma variada e irregular, e o tamanho pode variar de microfragmentos a pedaços de rochas de alguns metros de diâmetro.

O maior meteorito brasileiro (pesando mais de 5000 quilos), o Bendegó, foi encontrado no interior da Bahia em 1784 e encontra-se em exposição no Museu Nacional do Rio de Janeiro.


Meteorito Bendegó
Gás carbônico
Sabe do que são formadas aquelas bolhas que aparecem nos refrigerantes? De gás carbônico. E são também de gás carbônico as bolhas que se desprendem em comprimidos efervescentes.
O gás carbônico compõe apenas 0,03% do ar. Ele aparece na atmosfera como resultado da respiração dos seres vivos e da combustão. É a partir do gás carbônico e da água que as plantas produzem açucares no processo da fotossíntese.
A partir dos açucares, as plantas produzem outras substâncias - como as proteínas e as gorduras - que formam o seu corpo e que vão participar também da formação do corpo dos animais.
Agora veja na figura como o carbono circula pela natureza: a respiração, a decomposição (que é a respiração feita pelas bactérias e fungos) e a combustão liberam gás carbônico no ambiente. Esse gás carbônico é retirado da atmosfera pelas plantas durante a fotossíntese.


Como outros gases, o gás carbônico pode passar para o estado líquido ou para o estado sólido se baixarmos suficientemente sua temperatura (a quase 80ºC negativos). O gás carbônico sólido é conhecido como gelo-seco e é usado na refrigeração de vários alimentos.

O Nitrogênio
É o gás presente em maior quantidade no ar. Essa substância é fundamental para a vida na Terra, pois faz parte da composição das proteínas, que são moléculas presentes em todos os organismos vivos.
O nitrogênio é um gás que dificilmente se combina com outros elementos ou substâncias. Assim, ele entra e sai de nosso corpo durante a respiração (e também do corpo dos outros animais e plantas) sem alterações. Assim, os animais não conseguem obter o nitrogênio diretamente do ar, somente algumas bactérias são capazes de utilizar diretamente o nitrogênio, transformando-o em sais que são absorvidos pelas plantas. Os animais obtêm o nitrogênio somente por meio dos alimentos.
Essa transformação é feita por bactérias que vivem na raiz das plantas conhecidas como leguminosas (feijão, soja, ervilha, alfafa, amendoim, lentilha, grão-de-bico). É por isso que essas plantas não tornam o solo pobre em nitratos, como costuma ocorrer quando outras espécies vegetais são cultivadas por muito tempo no mesmo lugar.
Com sais de nitrogênio, as plantas fabricam outras substâncias que formam seu corpo. Os animais, por sua vez, conseguem essas substâncias ingerindo as plantas ou outros seres vivos. Quando os animais e as plantas morrem, essas substâncias que contêm nitrogênio sofrem decomposição e são transformadas em sais de nitrogênio, que podem ser usadas pelas plantas. Uma parte dos sais de nitrogênio, porém, é transformada em gás nitrogênio por algumas bactérias do solo e voltam para a atmosfera. Desse modo o nitrogênio é reciclado na natureza.


Saiba mais sobre o ciclo do nitogênio.

O nitrogênio e os Fertilizantes
A produção de sais de nitrogênio pode ser feita em indústrias químicas, a partir do nitrogênio do ar. Combina-se o nitrogênio com o hidrogênio, produzindo-se amoníaco, que é então usado para fabricar sais de nitrogênio.
O amoníaco tem ainda outras aplicações: ele é usado em certos produtos de limpeza e também para fabricar muitos outros compostos químicos.
Os Gases Nobres
São gases que dificilmente se combinam com outras substâncias, correspondendo a menos de 1% do ar. Eles não são utilizados pelo organismo dos seres vivos, entram e saem inalterados durante a respiração.
Entre os gases nobres, o argônio é o que está presente em maior quantidade (0,93%).
Em lâmpadas comuns (incandescentes), o argônio é muito utilizado, já que a sua produção é barata.
Outros gases nobres são:
  • neônio, usado em letreiros luminosos (é conhecido como gás néon);
  • xenônio, usado em lâmpadas de flash de máquinas fotográficas;
  • hélio, um gás de pequena densidade, usado em certos tipos de bexiga e balões dirigíveis;
  • radônio, um gás radiativo, que, por isso é perigoso, em determinadas concentrações, para os seres vivos.

O Vapor de Água

Ao se colocar água bem gelada num copo e esperar alguns instantes, a parte de fora do copo fica úmida.
Como a água de dentro do copo não pode atravessar o vidro, a água que se formou veio do ar em volta do copo. Foi o vapor de água do ar que se condensou (passou para o estado líquido) em contato com a temperatura mais baixa do copo.
A água no estado de vapor que existe na atmosfera origina-se da evaporação da água dos rios, mares, lagos e solos, e também da respiração e transpiração dos seres vivos.
Talvez você já tenha ouvido falar em umidade relativa do ar. É a relação entre a quantidade de água que existe em certo momento na atmosfera e a quantidade máxima que ela pode conter (em torno de 4%). Quando essa quantidade é atingida, dizemos que o ar está saturado. O ar está saturado nas nuvens, no nevoeiro e quando começa a chover. Quanto maior a umidade relativa, maior a chance de chover.





Existe um instrumento simples que pode ser utilizado para medir a umidade relativa do ar: o higrômetro de cabelo.
Que é que um higrômetro mede?
Um higrômetro indica umidades relativas. No higrômetro de cabelo um fio de cabelo humano, prêso em A, é enrolado no eixo B e fixo à mola C que o distende. Quando a umidade do ar aumenta, o cabelo absorve água do ar e expande, fazendo rolar o eixo com ponteiro ao ser distendido pela mola. O ponteiro indica a umidade relativa numa escala graduada.






Propriedades do Ar e dos Gases

Uma bexiga cheia de ar tem mais massa que uma bexiga vazia. Por quê?
Porque tem mais ar. O ar tem massa e ocupa espaço. Mas, no caso da bexiga, a diferença de massa é bem pequena e só pode ser medida em balanças bem sensíveis.


A diferença de massa é pequena, porque a densidade do ar é relativamente pequena - muito menor, por exemplo, que a densidade da água.


Agora considere esta situação: você sente um cheiro gostoso de bolo ou outra comida vindo da cozinha. Na realidade, você está sentindo o efeito de gases que saíram do alimento e que estimularam certas partes do seu nariz. Isso acontece devido a uma propriedade do ar e de todos os gases: eles tendem a se espalhar, preenchendo todo o espaço disponível. Por isso, os gases que se desprendem do alimento se espalham pela casa.
Compare os gases com os líquidos: quando você despeja um pouco de água numa garrafa, sem enchê-la, a água se deposita no fundo. Ela não ocupa o volume todo da garrafa. Mas, por outro lado, qualquer que seja a quantidade de ar dentro de uma garrafa, ele estará ocupando todo o espaço da garrafa. O ar, e os gases em geral, ocupam todo o volume do recipiente onde estão. É a propriedade da expansibilidade.
Quando sopramos uma bexiga de aniversário, enchendo-a bem, constatamos que a parede do balão fica bem esticada. Isso acontece devido a outra propriedade do ar e dos gases: eles exercem pressão contra a parede do recipiente que ocupam.



A pressão exercida pelo ar na superfície da Terra chama-se pressão atmosférica. Recebe esse nome porque a atmosfera é a camada de ar que envolve o planeta.

Pressão atmosférica e a altitude


O matemático francês Blaise Pascal (1623-1662) levou um barômetro para o alto de uma montanha. Após muitas observações, medições e anotações, ele verificou que a pressão do ar diminui com a altura. O ar vai ficando rarefeito (diminui a quantidade de moléculas nele presente), gradativamente, conforme aumenta a altitude.
A partir desse e de outros experimentos, os cientistas concluíram que a maioria dos gases está comprimida na parte mais próxima da superfície da Terra e que o ar fica rarefeito conforme a altitude aumenta, até um ponto em que não existe mais ar - esse é o limite da atmosfera de nosso planeta. Os avanços da ciência e da tecnologia têm possibilitado mais conhecimentos sobre a atmosfera.
O nivel do mar é utilizado como referencial quando se deseja calcular a pressão atmosférica.
Quanto maior a altitude, mais rarefeito é o ar, e assim, menor é a pressão que ele exerce sobre nós.

Compressibilidade e elasticidade
Observe o que acontece nas etapas do experimento abaixo:
Ao tampar a ponta da seringa e empurrar o êmbolo, o ar que existe dentro da seringa fica comprimido, passando a ocupar menos espaço. Isso ocorre em razão de uma propriedade do ar denominada compressibilidade.

Quando o êmbolo é solto e a força que comprime o ar é cessada, o ar volta a ocupar seu volume inicial. Isso ocorre em razão de uma propriedade do ar chamada elasticidade.




Os Seres Vivos e a Pressão Atmosférica
A atmosfera exerce pressão também sobre os organismos vivos.
Como o nosso corpo não se deforma? Ou porque não morremos esmagados?
Os organismos resistem porque os líquidos e os gases dentro deles exercem uma pressão contrária à da atmosfera.
A pressão atmosférica também é responsável pela entrada de ar nos nossos pulmões. Observe que na inspiração o tórax se expande, isto é, aumenta de volume.
Quando o tórax se expande, os pulmões também aumentam de volume, e o ar entra. Veja: na realidade, com a pressão do tórax, a pressão do ar nos pulmões diminui, ficando menor que a pressão atmosférica. É essa diferença entre a pressão atmosférica e a pressão de dentro dos pulmões que impulsiona o ar para dentro do nosso corpo.



Quando o ar sai, na expiração, ocorre o inverso: o volume do tórax e o dos pulmões diminuem, e a pressão do ar interna torna-se maior que a da atmosfera, fazendo o ar sair.



Se você já viajou para locais mais altos como a serra, viajou de avião ou passou por alguma outra situação na qual você mudou de altitude rapidamente, deve ter percebido uma sensação desagradável na parte interna da orelha. Essa sensação é decorrente de um desequilíbrio momentâneo entre a pressão que existe dentro do seu corpo e a do ambiente, em que houve alteração.
A pressão atmosférica exerce força desigual sobre um dos lados do tímpano, distendendo-o.


A previsão do tempo
A rádio, a televisão, os jornais e os sites diariamente anunciam a previsão do tempo. Dentro de certa margem de segurança, ficamos sabendo se vai chover, se vai fazer frio ou calor.
Para facilitar o estudo da atmosfera, os cientistas a dividem em várias camadas:

Troposfera
A troposfera é a camada mais próxima da superfície terrestre. Nela se formam as nuvens e ocorrem as chuvas, os ventos e os relâmpagos.
Na troposfera concentra-se a maior quantidade do gás oxigênio que os seres vivos utilizam na respiração.
Estratosfera
Nessa camada, a umidade (presença de vapor de água) é quase inexistente. Há baixa concentração de gás oxigênio, e o ar, em geral, apresenta-se rarefeito. Na estratosfera encontra-se o gás ozônio (gás cuja, molécula é formada por 3 átomos de oxigênio, O3). Essa camada filtra os raios ultravioletas do Sol, evitando assim danos aos seres vivos. Na troposfera, porém, o ozônio, quando presente, é considerado um poluente.
Nessa região atmosférica não ocorrem as turbulências provocadas pelos fenômenos meteorológicos, comuns na troposfera; por isso os vôos mais longos e feitos por grandes aviões ocorrem nessa camada.
Mesosfera
É uma camada também rica em gás ozônio. Apresenta baixas temperaturas.

Ionosfera ou termosfera
Nessa camada o ar é muito rarefeito e existem partículas carregadas de eletricidade. Essas partículas possibilitam a transmissão de ondas de rádio e similares a grandes distâncias.

Exosfera
É a ultima camada da atmosfera, isto é, o limite entre nosso planeta e o espaço cósmico. Nessa camada predomina gás hidrogênio. O ar é muito rarefeito e as moléculas de gás "escapam" constantemente para o espaço. É onde costumam ficar os satélites artificiais.

Toda os fatores que influênciam no clima da Terra estão contidos na Troposfera, vamos estudar cada um deles agora.
A importância da previsão do tempo

Se sabemos que vai chover, levamos o guarda-chuva quando saímos de casa. Mas uma dica importante sobre o tempo nos ajuda em muitas outras coisas. Entre elas, para avaliar as condições da estrada, quando viajamos, e também para a agricultura.
Os agricultores precisam, muitas vezes, fazer o plantio no início de um período de chuvas, porque as sementes precisam de água para germinar. Por outro lado, a previsão de enchentes, de geadas ou de falta de chuvas pode evitar prejuízos.
A meteorologia é a ciência que estuda as condições atmosféricas e, com isso, auxilia na previsão do tempo.
Os técnicos fazem a previsão do tempo estudando vários aspectos da atmosfera: massas de ar, frentes fria ou quentes, umidade do ar, temperatura do lugar, pressão atmosférica, etc.

Tempo e clima
É comum as pessoas confundirem os termos tempo e clima. Afinal, o que significa cada um deles?
O termo tempo corresponde a uma situação de momento. Indica o estado atmosférico em determinado tempo e lugar. Hoje, onde você mora, pode estar chovendo, mas amanhã poderá estar ensolarado. Pela manhã, pode estar muito calor e à tarde todos serem surpreendidos pela chegada de uma frente fria.
O termo clima corresponde ao conjunto de condições atmosféricas que ocorrem com mais freqüência em uma determinada região. Por exemplo, na caatinga, no Nordeste brasileiro, o clima é quente e seco, podendo ocorrer chuvas. Mesmo quando o tempo está chuvoso, o clima permanece o mesmo (quente e seco).

Fatores relacionados à previsão do tempo

As nuvens
O tipo de nuvem presente na atmosfera é uma pista para a previsão do tempo. Quando olhamos para o céu e vemos nuvens escuras, geralmente cinzentas, logo achamos que vai chover. A nuvem escura possui gotículas de água tão próximas umas das outras que a luz do Sol quase não consegue atravessá-las. E a chuva pode se formar justamente quando as gotículas se juntam e formam gotas maiores, que não ficam mais suspensas na atmosfera, e caem.
As nuvens podem ficar em diferentes altitudes e variar nas suas formas, que dependem de como a nuvem sobe e da temperatura do ar.
São utilizadas palavras que vieram do latim para descrever os vários tipos de nuvens.
  • Cirros - Nuvens altas e de cor branca. Cirru significa 'caracol' em latim. Muitas vezes essas nuvens se parecem com cabelos brancos. Podem ser formadas por cristais de gelo.

  • Cúmulos - Nuvens brancas formando grandes grupos, com aspecto de flocos de algodão. Cumulu, em latim significa 'pilha', 'montão'

  • Estratos - Formam grandes camadas que cobrem o céu, como se fossem um nevoeiro, e torna o dia nublado. Estratu significa 'camada'.

Para descrever as nuvens usamos ainda os termos nimbos e altos. Nimbos são nuvens de cor cinza-escuro. A presença de nimbos no seu é sinal de chuva. Nimbos significa 'portador de chuva'. E altos são nuvens elevadas.
Esses dois termos podem ser combinados para descrever os vários tipos de nuvens. Cúmulos-nimbos, por exemplo, são nuvens altas que costuma indicar tempestade.

As Massas de Ar
A massa de ar é um aglomerado de ar em determinadas condições de temperatura umidade e pressão. As massas de ar podem ser quentes ou frias. As quente, em geral, deslocam-se de regiões tropicais e as frias se originam nas regiões polares.
As massas de ar podem ficar estacionadas, em determinado local, por dias e até semanas. Mas quando se movem, provocam alteração no tempo havendo choques entre massas de ar quente e frio: enquanto uma avança, a outra recua.
O encontro entre duas massas de ar de temperaturas diferentes dá origem a uma frente, ou seja, a uma área de transição entre duas massas de ar. A frente pode ser fria ou quente. Uma frente fria ocorre quando uma massa de ar frio encontra e empurra uma massa de ar quente, ocasionando nevoeiro, chuva e queda de temperatura.


E uma frente quente ocorre quando uma massa de ar quente encontra uma massa de ar frio que estava estacionada sobre uma região, provocando aumento da temperatura.



Os Ventos

O ar em movimento se chama vento. Sua direção e velocidade afetam as condições do tempo. Para se prever quando uma massa de ar chegará a uma determinada localidade, é fundamental conhecer a velocidade dos ventos.
O movimento do ar, em relação à superfície da Terra, pode variar desde a calmaria e falta de vento até a formação de furacões que provocam a destruição em razão de ventos a mais de 120 quilômetros por hora.
A velocidade dos ventos é medida com um aparelho denominado anemômetro, que é, basicamente, um tipo de cata-vento, como se pode ver ao lado.
No anemômetro, as pequenas conchas giram quando o vento bate nelas, fazendo toda a peça rodar. Um ponteiro se movimenta em uma escala graduada, em que é registrada a velocidade do vento.

Nos aeroportos, é comum ver instrumentos, como, por exemplo, a biruta, que é muito simples, usada para verificar a direção do vento. Também podemos encontrar birutas na beira de praias, para orientar pescadores, surfistas etc.

Os aeroportos, atualmente têm torres de controle, nas quais as informações sobre velocidade e direção dos ventos obtidas por instrumentos são processadas por computadores, que fornecem dados necessários para o pouso e decolagem.
Agora vamos pensar: Em dias quentes, à beira-mar, algumas horas depois do amanhecer, pode-se sentir uma brisa agradável vinda do mar. Como podemos explicar isso?
O Sol aquece a água do mar e a terra. Mas a terra esquenta mais rápido que o mar. O calor da terra aquece o ar logo acima dela. Esse ar fica mais quente, menos denso e sobe. A pressão atmosférica nessa região se torna menor do que sobre o mar. Por isso, a massa de ar sobre o mar, mais fria, mais densa e com maior pressão, se desloca, ocupando o lugar do ar que subiu. Então esse ar aquece, e o processo se repete.
O movimento horizontal de ar do mar para a terra é chamado brisa marítima e acontece de dia.


De noite ocorre o contrário: a terra esfria mais rápido que o mar, já que a água ganha e perde calor mais lentamente que a terra. O ar sobre o mar está mais aquecido (o mar está liberando o calor acumulado durante o dia) e sobe. Então, o ar frio da terra se desloca para o mar. É a brisa terrestre.


Temperatura do Ar
A temperatura do ar é medida por meio de termômetros. Os boletins meteorológicos costumam indicar as temperaturas máxima e mínima previstas para um determinado período.
O vapor de água presente no ar ajuda a reter calor. Assim verificamos que, em lugares mais secos, há menor retenção de calor na atmosfera e a diferença entre temperatura máxima e mínima é maior. Simplificando, podemos dizer que nesses locais pode fazer muito calor durante o dia, graças ao Sol, mas frio à noite como, por exemplo, nos desertos e na caatinga.


Roupas típicas de habitantes do deserto costumam ser de lã, um ótimo isolante térmico, que protege tanto do frio quanto do calor excessivo. Além disso, as roupas são bem folgadas no corpo, com espaço suficiente para criar o isolamento térmico.

Umidade do Ar
A umidade do ar diz respeito à quantidade de vapor de água presente na atmosfera - o que caracteriza se o ar é seco ou úmido - e varia de um dia para o outro. A alta quantidade de vapor de água na atmosfera favorece a ocorrência de chuvas. Já com a umidade do ar baixa, é difícil chover.
Quando falamos de umidade relativa, comparamos a umidade real, que é verificada por aparelhos como o higrômetro, e o valor teórico, estimado para aquelas condições. A umidade relativa pode variar de 0% (ausência de vapor de água no ar) a 100% (quantidade máxima de vapor de água que o ar pode dissolver, indicando que o ar está saturado).
Em regiões onde a umidade relativa do ar se mantém muito baixa por longos períodos, as chuvas são escassas. Isso caracteriza uma região de clima seco.
A atmosfera com umidade do ar muito alta é um fator que favorece a ocorrência de chuva. Quem mora, por exemplo em Manaus sabe bem disso. Com clima úmido, na capital amazonense o tempo é freqüentemente chuvoso.
Como já vimos, a umidade do ar muito baixa causa clima seco e escassez de chuvas.
De acordo com a OMS (Organização Mundial da Saúde), valores de umidade abaixo de 20% oferecem risco à saúde, sendo recomendável a suspensão de atividades físicas, principalmente das 10 às 15horas. A baixa umidade do ar, entre outros efeitos no nosso organismo pode provocar sangramento nasal, em função do ressecamento das mucosas.
No entanto, também é comum as pessoas não se sentirem bem em dias quentes e em lugares com umidade do ar elevada. Isso acontece porque, com o ar saturado de vapor de água, a evaporação do suor do corpo se torna difícil, inibindo a perda de calor. E nosso corpo se refresca quando o suor que eliminamos evapora, retirando calor da pele.

Nível pluviométrico/ quantidade de chuva
A quantidade de chuva é medida pelo pluviômetro. Nesse aparelho, a chuva é recolhida por um funil no alto de um tambor e medida em um cilindro graduado.
A quantidade de chuva é medida no pluviômetro em milímetros: um milímetro de chuva corresponde a 1 litro de água por metro quadrado. Quando se diz, por exemplo, que ontem o índice pluviométrico, ou da chuva, foi de 5 milímetros na cidade de Porto Alegre, significa que se a água dessa chuva tivesse sido recolhida numa piscina ou em qualquer recipiente fechado, teria se formado uma camada de água com 5 milímetros de altura.
Os meteorologistas dizem que a chuva é leve quando há precipitação de menos de 0,5mm em uma hora; ela é forte quando excede os 4mm.


Pressão atmosférica
A pressão atmosférica está relacionada à umidade do ar. Quanto mais seco estiver o ar, maior será o valor desta pressão.
A diminuição da pressão atmosférica indica aumento da umidade do ar, que, por sua vez, indica a possibilidade de chuva. A pressão atmosférica é medida pelo barômetro.




Estações Meteorológicas
Nas estações meteorológicas são registradas e analisadas as variações das condições atmosféricas por meio de equipamentos dos quais fazem uso, como termômetros, higrômetros, anemômetros, pluviômetros, etc.
Nessas estações trabalham os meteorologistas, profissionais que estudam, entre outras coisas, as condições atmosféricas. Os meteorologistas contam com as informações captadas por satélites meteorológicos e radiossondas.
Os satélites meteorológicos são localizados em vários pontos do espaço, captam imagens da superfície e das camadas atmosféricas da Terra e podem mostrar a formação e o deslocamento das nuvens e das frentes frias ou quentes.

As radiossondas são aparelhos que emitem sinais de rádio. São transportados por balões e sua função é medir a pressão, a umidade, e a temperatura das camadas altas da atmosfera. Há aviões que também coletam e enviam informações sobre as condições do tempo.

Das estações meteorológicas, os técnicos enviam os dados das condições do tempo para os distritos ou institutos meteorológicos a fim de fazer as previsões do tempo para as diversas regiões.
No Brasil há o Inmet - Instituto Nacional de Meteorologia e o Inpe - Instituto Nacional de Pesquisas Espaciais, onde se fazem previsões que exigem maior precisão de dados.
As informações sobre o tempo nas diversas regiões do Brasil, divulgadas pelos noticiários, são obtidas junto a esses institutos ou de outros similares.


A poluição do ar e a nossa saúde

Como já vimos, a camada de ar que fica em contato com a superfície da Terra recebe o nome de troposfera que tem uma espessura entre 8 e 16 km. Devido aos fatores naturais, tais como as erupções vulcânicas, o relevo, a vegetação, os oceanos, os rios e aos fatores humanos como as indústrias, as cidades, a agricultura e o próprio homem, o ar sofre, até uma altura de 3 km, influências nas suas características básicas.
Todas as camadas que constituem nossa atmosfera possuem características próprias e importantes para a proteção da terra. Acima dos 25 km, por exemplo, existe uma concentração de ozônio (O3) que funciona como um filtro, impedindo a passagem de algumas radiações prejudiciais à vida. Os raios ultravioletas que em grandes quantidades poderiam eliminar a vida são, em boa parte, filtrados por esta camada de ozônio. A parcela dos raios ultravioletas que chegam a terra é benéfica tanto para a eliminação de bactérias como na prevenção de doenças. Nosso ar atmosférico não foi sempre assim como é hoje, apresentou variações através dos tempos. Provavelmente o ar que envolvia a Terra, primitivamente, era formado de gás metano (CH4), amônia (NH3), vapor d’água e hidrogênio (H2). Com o aparecimento dos seres vivos, principalmente os vegetais, a atmosfera foi sendo modificada. Atualmente, como já sabemos, o ar é formado de aproximadamente 78% de nitrogênio (N2), 21% de oxigênio, 0,03% de gás carbônico (CO2) e ainda gases nobres e vapor de água. Esta composição apresenta variações de acordo com a altitude.

Fatores que provocam alterações no ar

A alteração na constituição química do ar através dos tempos indica que o ar continua se modificando na medida em que o homem promove alterações no meio ambiente. Até agora esta mistura gasosa e transparente tem permitido a filtragem dos raios solares e a retenção do calor, fundamentais à vida. Pode-se dizer, no entanto, que a vida na Terra depende da conservação e até da melhoria das características atuais do ar.

Os principais fatores que têm contribuído para provocar alterações no ar são:
  • A poluição atmosférica pelas indústrias, que em algumas regiões já tem provocado a diminuição da transparência do ar;
  • o aumento do número de aviões supersônicos que, por voarem em grandes altitudes, alteram a camada de ozônio;
  • os desmatamentos, que diminuindo as áreas verdes causam uma diminuição na produção de oxigênio;
  • as explosões atômicas experimentais, que liberam na atmosfera grande quantidade de gases, de resíduos sólidos e de energia;
  • os automóveis e indústrias, que consomem oxigênio e liberam grandes quantidades de monóxido de carbono (CO) e dióxido de carbono (CO2).
Todos estes fatores, quando associados, colocam em risco o equilíbrio total do planeta, podendo provocar entre outros fenômenos, o chamado efeito estufa, que pode provocar um sério aumento da temperatura da terra, o que levará a graves conseqüências.

O Efeito Estufa
Graças ao efeito estufa, a temperatura da Terra se mantém, em média, em torno de 15ºC, o que é favorável à vida no planeta. Sem esse aquecimento nosso planeta seria muito frio.
O nome estufa tem origem nas estufas de vidro, em que se cultivam certas plantas, e a luz do Sol atravessa o vidro aquecendo o interior do ambiente. Apenas parte do calor consegue atravessar o vidro, saindo da estufa. De modo semelhante ao vidro da estufa, a atmosfera deixa passar raios de Sol que aquecem a Terra. Uma parte desse calor volta e escapa para o espaço, atravessando a atmosfera, enquanto outra parte é absorvida por gases atmosféricos (como o gás carbônico) e volta para a Terra, mantendo-a aquecida.
No entanto desde o surgimento das primeiras indústrias, no século XVIII, tem aumentado a quantidade de gás carbônico liberado para a atmosfera.
A atmosfera fica saturada com esse tipo de gás, que provoca o agravamento do efeito estufa. Cientistas e ambientalistas têm alertado para esse fenômeno que parece ser a principal causa do aquecimento global.
Observe abaixo um esquema do efeito estufa.

  • O gás carbônico e outros gases permitem a passagem da luz do Sol, mas retêm o calor por ele gerado.
  • A queima de combustíveis fosseis e outros processos provocam acúmulo de gás carbônico no ar, aumentando o efeito estufa.
  • Por meio da fotossíntese de plantas e algas, ocorre a remoção de parte do gás carbônico do ar.
A Poluição do Ar



A poluição do ar é definida como sendo a degradação da qualidade do ar como resultado de atividades diretas ou indiretas que:
  • Prejudiquem a saúde, a segurança e o bem-estar da população;
  • criem condições adversas às atividades sociais e econômicas;
  • afetem desfavoravelmente a biota (organismos vivos);
  • afetem as condições estéticas ou sanitárias do meio ambiente;
  • lancem matérias ou energia em desacordo com os padrões ambientais estabelecidos em leis federais [Lei Federal no 6938, de 31 de agosto de 1981, regulamentada pelo decreto no 88 351/83].

Poluição e sua fonte

Para facilitar o estudo do assunto, identificamos quatro tipos principais de poluição do ar, segundo as fontes poluidoras.
Poluição de origem natural: resultante de processos naturais como poeiras, nevoeiros marinhos, poeiras de origem extraterrestre, cinzas provenientes de queimadas de campos, gases vulcânicos, pólen vegetal, odores ligados à putrefação ou fermentação natural, entre outros.
Poluição relacionada aos transportes: resultante da ação de veículos automotores e aviões. Devido a combustão da gasolina, óleo diesel, álcool etc., os veículos automotores eliminam gases como o monóxido de carbono, óxido de enxofre, gases sulfurosos, produtos à base de chumbo, cloro, bromo e fósforo, além de diversos hidrocarbonetos não queimados. Variando de acordo com o tipo de motor, os aviões eliminam para a atmosfera: cobre, dióxido de carbono, monoaldeídos, benzeno etc.
Poluição pela combustão: resultante de fontes de aquecimento domésticos e de incinerações, cujos agentes poluentes são: dióxido de carbono, monóxido de carbono, aldeídos, hidrocarbonetos não queimados, compostos de enxofre. O anidrido sulfuroso, por exemplo, pode transformar-se em anidrido sulfúrico, e este, em ácido sulfúrico, que precipita juntamente com as águas das chuvas.
Poluição devida às indústrias: resultante dos resíduos de siderúrgicas, fábricas de cimento e de coque, indústrias químicas, usinas de gás e fundição de metais ferrosos. Entre esses resíduos encontram-se substâncias tóxicas e irritantes, poluentes fotoquímicos, poeiras etc. Além da poeira de natureza química, com grãos de tamanho dos mais diferentes, os principais poluentes industriais encontram-se no estado gasoso, sendo que os mais freqüentes são: dióxido de carbono, monóxido de carbono, óxido de nitrogênio, compostos fluorados, anidrido sulfuroso, fenóis e álcoois de odores desagradáveis.
Inversão térmica
Um fenômeno interessante na atmosfera é o da inversão térmica, ocasião na qual a ação dos poluentes do ar pode ser bastante agravada. A coisa funciona assim: normalmente, o ar próximo à superfície do solo está em constante movimento vertical, devido ao processo convectivo (correntes de convecção). A radiação solar aquece a superfície do solo e este, por sua vez, aquece o ar que o banha; este ar quente é menos denso que o ar frio, desse modo, o ar quente sobe (movimento vertical ascendente) e o ar frio, mais denso, desce (movimento vertical descendente).

Este ar frio que toca a superfície do solo, recebendo calor dele, esquenta, fica menos denso, sobe, dando lugar a um novo movimento descendente de ar frio.
E o ciclo se repete. O normal, portanto, é que se tenha ar quente numa camada próxima ao solo, ar frio numa camada logo acima desta e ar ainda mais frio em camadas mais altas porém, em constantes trocas por correntes de convecção. Esta situação normal do ar colabora com a dispersão da poluição local.
Na inversão térmica, condições desfavoráveis podem, entretanto, provocar uma alteração na disposição das camadas na atmosfera. Geralmente no inverno, pode ocorrer um rápido resfriamento do solo ou um rápido aquecimento das camadas atmosféricas superiores. Quando isso ocorre, o ar quente ficando por cima da camada de ar frio, passa a funcionar como um bloqueio, não permitindo os movimentos verticais de convecção: o ar frio próximo ao solo não sobe porque é o mais denso e o ar quente que lhe está por cima não desce, porque é o menos denso. Acontecendo isso, as fumaças e os gases produzidos pelas chaminés e pelos veículos não se dispersam pelas correntes verticais. Os rolos de fumaça das chaminés assumem posição horizontal, ficando nas proximidades do solo. A cidade fica envolta numa “neblina” e conseqüentemente a concentração de substâncias tóxicas aumenta muito.
O fenômeno é comum no inverno de cidades como Nova Iorque, São Paulo e Tóquio, agravado pela elevada concentração de poluentes tóxicos diariamente despejados na atmosfera.



Terras para agricultura

Por muito tempo, no passado, a espécie humana conseguia alimento apenas caçando, pescando e colhendo grãos, frutos e raízes. Mas, há cerca de dez mil anos, nossa espécie passou também a plantar os vegetais e criar os animais que lhe servem de alimento. Era o ponto de partida para o desenvolvimento da agricultura.

Com o aumento da população e a necessidade de se produzirem cada vez mais alimentos, a vegetação original das florestas e de outros ecossistemas foi sendo destruída para dar lugar ao cultivo de plantas comestíveis e à criação de animais. Hoje, o desmatamento é feito com máquinas (tratores e serras) ou com o fogo - são as chamadas queimadas, que trazem uma série de problemas.
De todas as terras emersas (fora da água) que formam os continentes e as ilhas do nosso planeta, apenas 10% aproximadamente são cultiváveis.

Muitas vezes, a atividade agrícola é feita de forma inadequada, por desconhecimento ou por falta de recursos e equipamentos. Como resultado, depois de alguns anos de produção, os nutrientes do solo se esgotam e as plantas não crescem mais.
Dependendo do tipo de solo e do tipo de plantação são necessários tomar alguns cuidados com a terra, e aplicar certos procedimentos como vamos ver a seguir.

Agricultura sustentável
A agricultura para a produção de alimentos para ser sustentável, em relação ao meio ambiente:
  • não deve causar prejuízos ao ambiente;
  • não deve liberar substâncias tóxicas ou danosas na atmosfera, nas águas superficiais ou nos lençóis freáticos;
  • deve preservar e restaurar a fertilidade do solo, prevenindo a erosão;
  • deve usar água de modo a permitir que se recarreguem as reservas aqüíferas, evitando que elas se esgotem.
Produzir alimento implica também manter uma diversidade de culturas para não empobrecer o solo e usar, quando necessário, um controle biológico para as pestes, mas com cuidado para evitar a contaminação do ambiente com substâncias químicas que possam se acumular.
Dessa forma a agricultura sustentável facilita a economia local e preserva a saúde do solo e a dos seres que nele vivem.

Cuidados com o solo
Quando o solo não apresenta condições necessárias à agricultura ou quando se deseja melhorar as suas condições, alguns cuidados devem ser tomados, como adubação, rotação de culturas, aragem do solo, irrigação e drenagem.

Adubação
Adubar significa enriquecer o solo com elementos nutrientes, quando ele está deficiente de minerais. Para isso, são utilizados adubos, substâncias capazes de fertilizar o solo.
Os adubos podem ser orgânicos (por exemplo: esterco, farinha de osso, folhas, galhos enterrados) ou minerais, que são inorgânicos (por exemplo: substâncias químicas são aplicadas, como nitrato de sódio, um tipo de sal).
Há ainda a adubação verde. Algumas vezes, as leguminosas também são utilizadas como adubos. Quando crescem são cortadas e enterradas no solo, enriquencendo-os com nitratos.

Rotação de culturas
A rotação de culturas consiste de alternar o plantio de leguminosas com outras variedades de plantas no mesmo local. Dessa forma as leguminosas, pela associação com bactérias que vivem nas suas raízes, devolvem para o local nutrientes utilizados por outras plantas, evitando o esgotamento do solo.

Aragem do solo
Arar o solo é outro cuidado que se deve ter para o solo não ficar compactado, "socado".
Revolver a terra, além de arejar, facilita a permeabilidade do solo, permitindo que as raízes das plantas penetrem, no solo, além de levar para a superfície o húmus existente.


Minhocas - arados da natureza
As minhocas realizam um verdadeiro "trabalho" de arado no solo. Ao se movimentarem, elas abrem túneis e engolem parte da terra que deslocam, retirando daí o seu alimento.
Esses túneis, também denominados galerias, aumentam a porosidade do solo, e por isso a circulação do ar e a infiltração de água se intensificam.
As suas fezes contribuem para a formação do húmus, matéria orgânica importantíssima para a fertilidade do solo, facilitando o desenvolvimento de microorganismos decompositores ou fixadores de nitrogênio.
A minhocultura é a criação de minhocas em tanques especiais com finalidades comerciais. As minhocas são vendidas para isca, mas o húmus por elas produzido é comercializado como fertilizante para a agricultura, a jardinagem etc.



Irrigação e drenagem
Irrigar e drenar são alguns dos cuidados que devem ser tomados para manter o nível da umidade necessário ao solo e para garantir que ele continue fértil.
Com a irrigação, a água chega as regiões ou áreas muito secas. Já com a drenagem, retira-se o excesso de água do solo, possibilitando que ele seja arejado. Com o aumento dos poros, criam-se passagens de ar entre as partículas do solo.




Os perigos da poluição do solo

Não só os ecologistas, mas autoridades e todo cidadão devem ficar atentos aos perigos da poluição que colocam em risco a vida no planeta Terra.

O lixo
No início da história da humanidade, o lixo produzido era formado basicamente de folhas, frutos, galhos de plantas, pelas fezes e pelos demais resíduos do ser humano e dos outros animais. Esses restos eram naturalmente decompostos, isto é, reciclados e reutilizados nos ciclos do ambiente.
Com as grandes aglomerações humanas, o crescimento das cidades, o desenvolvimento das indústrias e da tecnologia, cada vez mais se produzem resíduos (lixo) que se acumulam no meio ambiente.
Hoje, além do lixo orgânico, que é naturalmente decomposto, reciclado e "devolvido" ao ambiente, há o lixo industrial eletrônico, o lixo hospitalar, as embalagens de papel e de plástico, garrafas, latas etc. que, na maioria das vezes, não são biodegradáveis, isto é, não são decompostos por seres vivos e se acumulam na natureza.


Lixo urbano despejado nos rios.


Lixões a céu aberto
A poluição do solo causada pelo lixo pode trazer diversos problemas.
O material orgânico que sofre a ação dos decompositores - como é o caso dos restos de alimentos - ao ser decompostos, forma o chorume. Esse caldo escuro e ácido se infiltra no solo. Quando em excesso, esse líquido pode atingir as águas do subsolo (os lençóis freáticos) e, por conseqüência contaminar as águas de poços e nascentes.
As correntezas de água da chuva também podem carregar esse material para os rios, os mares etc.


O liquido escuro é chorume saido dos lixos.


Chorume nos rios (mancha escura)


A poluição do solo por produtos químicos

A poluição do solo também pode ser ocasionada por produtos químicos lançado nele sem os devidos cuidados. Isso ocorre, muitas vezes, quando as indústrias se desfazem do seu lixo químico. Algumas dessas substâncias químicas utilizadas na produção industrial são poluentes que se acumulam no solo.
Um outro exemplo são os pesticidas aplicados nas lavouras e que podem, por seu acúmulo, saturar o solo, ser dissolvidos pela água e depois ser absorvidos pelas raízes das plantas. Das plantas passam para o organismo das pessoas e dos outros animais que delas se alimentam.
Os fertilizantes, embora industrializados para a utilização no solo, são em geral, tóxicos. Nesse caso, uma alternativa possível pode ser, por exemplo, o processo de rotação de culturas, usando as plantas leguminosas; esse processo natural não satura o solo, é mais econômico que o uso de fertilizantes industrializados e não prejudica a saúde das pessoas.
A poluição do solo, e da biosfera em geral, pode e deve ser evitada. Uma das providências necessárias é cuidar do destino do lixo.

O destino do lixo


Lixão de Araruama.

O lixo das residências, das escolas e das fábricas diferem quanto ao seu destino.
Se você mora em uma cidade e ela conta com a coleta de lixo, um importante serviço de saneamento básico, possivelmente ele será transportado para longe do ambiente urbano.
Mas vale lembrar que os depósitos de lixo a céu aberto ou mesmo os aterros comuns, onde o lixo é coberto de forma aleatória, não resolvem o problema da contaminação do ambiente, principalmente do solo.

Aterros sanitários
Nos aterros sanitários, o lixo, coberto com terra e amassado, é colocado em grandes buracos. Esse procedimento é repetido várias vezes, formando-se camadas sobrepostas.

Os aterros sanitários possuem sistemas de drenagem, que retiram o excesso de líquido, e sistemas de tratamento de resíduos líquidos e gasosos.
A construção de um aterro sanitário exige alguns cuidados:




  • o aterro deve ser pouco permeável, isto é, deixar passar pouca água e lentamente;
  • o aterro deve ser distante de qualquer lugar habitado;
  • não deve haver lençol subterrâneo de água nas proximidades do aterro.
Por essas razões, a implantação e a manutenção de um aterro sanitário têm um alto custo econômico.


Aterro sanitário em Sorocaba.

Incineração
A incineração reduz bastante o volume de resíduos e destrói organismos que causam doenças. É um processo caro, pois, para evitar a poluição do ar, é necessária a instalação de filtros e de equipamentos especiais para filtrar a fumaça resultante da incineração, que também é poluente.
O lixo deve ser queimado em aparelhos e usinas especiais. Após a queima,  o material que resta pode ser encaminhado para aterros sanitários.




Compostagem
A compostagem é a transformação dos restos orgânicos do lixo em um composto, nesse caso, em adubo. Esse adubo é resultado da ação de seres decompositores (bactérias e fungos) sobre as substâncias orgânicas do lixo.




Reciclagem
Reciclar é uma boa opção, pois diversos componentes do nosso lixo diário podem ser reaproveitados.
Em várias cidades brasileiras, há a coleta seletiva e a reciclagem do lixo, o que tem contribuído para diminuir o desperdício, além de proteger o solo de materiais não recicláveis pela natureza.

Aprenda aqui sobre a reciclagem




A erosão do solo

Como sabemos as chuvas, o vento e as variações de temperatura provocadas pelo calor e pelo frio alteram e desagregam as rochas. O solo também sofre a ação desses fatores: o impacto das chuvas e do vento, por exemplo, desagrega as suas partículas. Essas partículas vão então sendo removidas e transportadas para os rios, lagos, vales e oceanos.


Torres, RS

Bahia

Nas fotos acima, podemos observar como a ação da própria natureza pode provocar mudanças profundas na paisagem. O mar, chuva e o vento esculpiram os paredões na praia de Torres, RS e as falésias na Bahia.
No clima úmido e nos solos cobertos por uma vegetação natural, a erosão é, em geral, muito lenta, o que permite que seja compensada pelos processos que formam o solo a partir das rochas.
Os cientistas afirmam que as montanhas mais altas e que tem seus picos em forma de agulhas apontadas para cima são novas, do aspecto geológico. As mais antigas  não são tão altas e tem o cume arredondado, com as suas rochas duras à vista. Elas vêm sofrendo a mais tempo a ação erosiva, que as desgastou bastante. Esse tipo de erosão é muito comum no território brasileiro, mas, por ter uma ação lenta, é quase sempre imperceptível aos nossos olhos.


Montanha com pico em forma de agulha: Dedo de Deus, Rio de Janeiro, RJ.


Montanha com o cume arredondado: Pedra Azul em domingos Martins, ES.


A ação do ser humano

O desmatamento provocado pelas atividades humanas acelera muito a erosão natural. Vamos ver por quê.
Em vez de cair direto no solo, boa parte da água da chuva bate antes na copa das árvores ou nas folhas da vegetação, que funcionam como um manto protetor. Isso diminui muito o impacto da água sobre a superfície. Além disso, uma rede de raízes ajuda a segurar as partículas do solo enquanto a água escorre pela terra. E não podemos esquecer também que a copa das árvores protege o solo contra o calor do Sol e contra o vento.

Desmatamento para o cultivo em Marcelândia, MT.

Ao destruirmos a vegetação natural para construir casa ou para a lavoura, estamos diminuindo muito a proteção contra a erosão. A maioria das plantas que nos serve de alimento tem pouca folhagem e , por isso, não protege tão bem o solo contra a água da chuva. Suas raízes são curtas e ficam espaçadas nas plantações, sendo pouco eficientes para reter as partículas do solo. Finalmente, muitas plantas - como o milho, a cana-de-açúcar, o feijão e o algodão - não cobrem o solo o ano inteiro, deixando-o exposto por um bom tempo. O resultado é que a erosão se acelera, e a parte fértil fica prejudicada.

Com a erosão, o acúmulo de terra transportada pela água pode se depositar no fundo dos rios, obstruindo seu fluxo. Esse fenômeno é chamado de assoreamento e contribui para o transbordamento de rios e o alagamento das áreas vizinhas em períodos de chuva.

O município de Sítio do Mato no oeste baiano, está sendo engolido pelas águas e areias do Rio São Francisco.

Há ainda outro problema resultante do desmatamento. Sem a cobertura da vegetação, as encostas dos morros correm maior risco de desmoronar, provocando desabamentos de terra e rochas, com graves consequências.
Quando o desmatamento é feito por meio de queimadas, ocorre outro problema: o fogo acaba destruindo também os microorganismos que realizam a decomposição da matéria orgânica e promovem a reciclagem dos nutrientes necessários às plantas. A perda de matéria orgânica deixa o solo mais exposto à erosão e à ação das chuvas, acentuando o seu empobrecimento.
A queimada também libera na atmosfera gases que, quando em concentração muito elevada, prejudicam a saúde humana. Além disso, nos casos em que a queimada é realizada de forma não controlada, ela pode se alastrar por áreas de proteção ambiental, parques, etc.
Por todos esses motivos, as queimadas devem ser evitadas.

Como evitar a erosão?

Existem técnicas de cultivo que diminuem a erosão do solo. Nas encostas, por exemplo, onde a erosão é maior, as plantações podem ser feitas em degraus ou terraços, que reduzem a velocidade de escoamento da água.
Em encostas não muito inclinadas, em vez de plantar as espécies dispostas no sentido do fluxo da água, devemos formar fileiras de plantas em um mesmo nível do terreno, deixando espaço entre as carreiras. Essas linhas de plantas dispostas em uma mesma altura são chamadas de curvas de nível.
Outra forma de proteger a terra é cultivar no mesmo terreno plantas diferentes mas em períodos alternados. Desse modo o solo sempre tem alguma cobertura protetora. É comum a alternância de plantação de milho; por exemplo, com uma leguminosa. As leguminosas trazem uma vantagem adicional ao solo: repõe o nitrogênio retirado do solo pelo milho ou outra cultura. Esse "rodízio" de plantas é conhecido como rotação de culturas.
Cabe ao governo orientar os agricultores sobre as plantas mais adequadas ao cultivo em suas terras e sobre as técnicas agrícolas mais apropriadas. É fundamental também que os pequenos proprietários do campo tenham acesso a recursos que lhes possibilitem comprar equipamentos e materiais para o uso correto do solo.




Importância e vantagens da reciclagem

A partir da década de 1970, a produção de embalagens e produtos descartáveis  aumentou significativamente, assim como a produção de lixo, principalmente nos países desenvolvidos. Atualmente, muitos governos e ONGs estão cobrando das empresas posturas responsáveis: o crescimento econômico deve estar aliado à preservação do meio ambiente. Atividades como campanhas de coleta seletiva de lixo e reciclagem de alumínio e papel, já são comuns em várias partes do mundo.
O processo de reciclagem, além de preservar o meio ambiente também gera riquezas, os materiais mais reciclados são o vidro, o alumínio, o papel e o plástico. Esta reciclagem contribui para a diminuição significativa da poluição do solo, da água e do ar. Muitas indústrias estão reciclando materiais como uma forma de reduzir os custos de produção.

Muitos materiais como, por exemplo, o alumínio pode ser reciclado com um nível de reaproveitamento de quase 100%. Derretido, ele retorna para as linhas de produção das indústrias de embalagens, reduzindo os custos para as empresas.
Outro benefício da reciclagem é a quantidade de empregos que ela tem gerado nas grandes cidades. Muitos desempregados estão buscando trabalho neste setor e conseguindo renda para manterem suas famílias. Cooperativas de catadores de papel e alumínio já são uma boa alternativa nos centros urbanos do Brasil.

Muitas campanhas educativas têm despertado a atenção para o problema do lixo nas grandes cidades. Cada vez mais, os centros urbanos, com grande crescimento populacional, têm encontrado dificuldades em conseguir locais para instalarem depósitos de lixo. Portanto, a reciclagem apresenta-se como uma solução viável economicamente, além de ser ambientalmente correta.
Nas escolas, os professores devem orientar os alunos a separarem o lixo em suas residências, caso isto já não esteja acontecendo. Hoje é comum que os condomínios já tenham organizada a coleta seletiva.


Outras vantagens da reciclagem:
  • Cada 50 quilos de papel usado, transformado em papel novo, evita que uma árvore seja cortada. Pense na quantidade de papel que você já jogou fora até hoje e imagine quantas árvores você poderia ter ajudado a preservar.
  • Cada 50 quilos de alumínio usado e reciclado, evita que sejam extraídos do solo cerca de 5.000 quilos de minério, a bauxita. Quantas latinhas de refrigerantes você já jogou no lixo comum até hoje?
  • Com um quilo de vidro quebrado, faz-se exatamente um quilo de vidro novo. E a grande vantagem do vidro é que ele pode ser reciclado infinitas vezes.
  • Economia de energia e matérias-primas. Menos poluição do ar, da água e do solo.
  • Melhora a limpeza da cidade, pois o morador que adquire o hábito de separar o lixo, dificilmente o joga nas vias públicas.
  • Gera renda pela comercialização dos recicláveis. Diminui o desperdício.
  • Gera empregos para os usuários dos programas sociais e de saúde da Prefeitura.
  • Dá oportunidade aos cidadãos de preservarem a natureza de uma forma concreta, tendo mais responsabilidade com o lixo que geram.
Agora imagine só os aterros sanitários: quanto material que está lá, ocupando espaço, e poderia ter sido reciclado!

Como podemos observar, se o homem souber utilizar os recursos da natureza, poderemos ter, muito em breve, um mundo mais limpo e mais desenvolvido. Desta forma, poderemos conquistar o tão sonhado desenvolvimento sustentável do planeta.
Exemplos de Produtos Recicláveis
  • Vidro: potes de alimentos (azeitonas, milho, requeijão, etc.), garrafas, frascos de medicamentos, cacos de vidro.
  • Papel: jornais, revistas, folhetos, caixas de papelão, embalagens de papel.
  • Metal: latas de alumínio, latas de aço, pregos, tampas, tubos de pasta, cobre, alumínio.
  • Plástico: potes de plástico, garrafas PET, sacos plásticos, embalagens e sacolas de supermercado.
Simbologia da reciclagem


As cores características dos containers apropriados para a coleta seletiva de lixo:



Até hoje, não se sabe onde e com que critério foi criado o padrão de cores dos containers utilizados para a coleta seletiva voluntária em todo o mundo. No entanto, alguns países já reconhecem esse padrão como um parâmetro oficial a ser seguido por qualquer modelo de gestão de programas de coleta seletiva.
Existe uma simbologia específica para a reciclagem de plásticos:
No Brasil existe uma norma (NBR 13230) da ABNT - Associação Brasileira de Normas Técnicas, que padroniza os símbolos que identificam os diversos tipos de resinas (plásticos) virgens. O objetivo é facilitar a etapa de triagem dos resíduos plásticos que serão encaminhados à reciclagem. Os tipos são classificados por números a saber:
  • PET
  • PEAD
  • PVC
  • PEBD
  • PP
  • PS
  • Outros

Como separar
Para a separação do material, basta ter em casa dois recipientes: um para o lixo úmido e rejeitos a serem recolhidos pela Companhia de Limpeza da Cidade e outro recipiente para o lixo seco: plástico, metal, vidro e papel, todos devidamente lavados e/ou limpos e secos.
No caso de condomínios, escolas ou empresas, pode-se aumentar o número de recipientes destinados à coleta seletiva, identificando-os por cores e tipos de material:







Reciclagem do papel

O papel é um dos produtos mais utilizados nas tarefas do cotidiano. Quando não está sendo mais utilizado, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do papel reciclado. O papel reciclado tem praticamente todas as características do papel comum, porém sua cor pode variar de acordo com o papel utilizado no processo de reciclagem.


Importância

A reciclagem do papel é de extrema importância para o meio ambiente. Como sabemos, o papel é produzido através da celulose de determinados tipos de árvores. Quando reciclamos o papel ou compramos papel reciclado estamos contribuindo com o meio ambiente, pois árvores deixaram de ser cortadas. Não podemos esquecer também, que a reciclagem de papel gera renda para milhares de pessoas no Brasil que atuam, principalmente, em cooperativas de catadores e recicladores de papel.

Coleta

Uma das etapas mais importantes no processo de reciclagem de papel é a separação e coleta seletiva do papel. Nas empresas, condomínios e outros locais existem espaços destinados ao descarte de papel.

Tipos de papéis recicláveis
Tipos de papel que podem ser reciclados: papel sulfite, papelão, caixas de embalagens de produtos, papel de presente, folhas de caderno, entre outros.

Como fazer papel reciclado em casa (reciclagem caseira)
Materiais:
  • papel e água
  • bacias: rasa e funda
  • balde
  • moldura de madeira com tela de nylon ou peneira reta
  • moldura de madeira vazada (sem tela)
  • liquidificador
  • jornal ou feltro
  • pano (ex.: morim)
  • esponjas ou trapos
  • varal e pregadores
  • prensa ou duas tábuas de madeira
  • peneira côncava (com "barriga")
  • mesa
Modo de preparo:

A - Preparando a polpa

Pique o papel e deixe de molho durante um dia ou uma noite na bacia rasa, para amolecer. Coloque água e papel no liquidificador, na proporção de três partes de água para uma de papel. Bata por dez segundos e desligue. Espere um minuto e bata novamente por mais dez segundos. A polpa está pronta.
B - Fazendo o papel
  1. Despeje a polpa numa bacia grande, maior que a moldura.
  2. Coloque a moldura vazada sobre a moldura com tela. Mergulhe a moldura verticalmente e deite-a no fundo da bacia.
  3. Suspenda-as ainda na posição horizontal, bem devagar, de modo que a polpa fique depositada na tela. Espere o excesso de água escorrer para dentro da bacia e retire cuidadosamente a moldura vazada.
  4. Vire a moldura com a polpa para baixo, sobre um jornal ou pano.
  5. Tire o excesso de água com uma esponja.
  6. Levante a moldura, deixando a folha de papel artesanal ainda úmida sobre o jornal ou morim.
C- Prensando as folhas

Para que suas folhas de papel artesanal sequem mais rápido e o entrelaçamento das fibras seja mais firme, faça pilhas com o jornal da seguinte forma:
  1. Empilhe três folhas do jornal com papel artesanal. Intercale com seis folhas de jornal ou um pedaço de feltro e coloque mais três folhas do jornal com papel. Continue até formar uma pilha de 12 folhas de papel artesanal.
  2. Coloque a pilha de folhas na prensa por 15 minutos. Se não tiver prensa, ponha a pilha de folhas no chão e pressione com um pedaço de madeira.
  3. Pendure as folhas de jornal com o papel artesanal no varal até que sequem completamente. Retire cada folha de papel do jornal ou morim e faça uma pilha com elas. Coloque esta pilha na prensa por 8 horas ou dentro de um livro pesado por uma semana.
D- Efeitos decorativos
  • Misture à polpa: linha, gaze, fio de lã, casca de cebola ou casca de alho, chá em saquinho, pétalas de flores e outras fibras.
  • Bata no liquidificador junto com o papel picado: papel de presente, casca de cebola ou de alho.
    Coloque sobre a folha ainda molhada: barbante, pedaços de cartolina, pano de tricô ou crochê. Neste caso, a secagem será natural - não é necessário pressionar com o pedaço de madeira.
  • Para ter papel colorido: bata papel crepom com água no liquidificador e junte essa mistura à polpa. Outra opção é adicionar guache ou anilina diretamente à polpa.
Dicas importantes
  • A tela de nylon deve ficar bem esticada, presa à moldura por tachinhas ou grampos.
  • Reutilize a água que ficar na bacia para bater mais papel no liquidificador
  • Conserve a polpa que sobrar: peneire e esprema com um pano. Guarde, ainda molhada (em pote plástico no congelador) ou seca (em saco de algodão).
  • A polpa deve ser ainda conservada em temperatura ambiente.



Reciclagem do vidro

O vidro é um dos produtos mais utilizados nas tarefas do dia-a-dia. Ao ser descartado por pessoas e empresas, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do vidro reciclado. O vidro reciclado tem praticamente todas as características do vidro comum. Ele pode ser reciclado muitas vezes sem perder sua características e qualidade.

Importância

A reciclagem do vidro é de extrema importância para o meio ambiente. Como sabemos, o vidro é produzido através da celulose de determinados tipos de árvores. Quando reciclamos o vidro ou compramos vidro reciclado estamos contribuindo com o meio ambiente, pois este material deixa de ir para os aterros sanitários ou para a natureza (rios, lagos, solo, matas). Não podemos esquecer também, que a reciclagem de vidro gera renda para milhares de pessoas no Brasil que atuam, principalmente, em cooperativas de catadores e recicladores de vidro e outros materiais reciclados.



Coleta seletiva

Uma das etapas mais importantes no processo de reciclagem de vidro é a separação e coleta seletiva do vidro. Nas empresas, condomínios e outros locais existem espaços destinados ao descarte de vidro.

Separação no processo de reciclagem
Uma das primeiras etapas no processo de reciclagem do vidro é sua separação por cores (âmbar, verde, translúcido e azul) e tipos (lisos, ondulados, vidros de janelas, de copos, etc). Esta separação é de extrema importância para a fabricação de novos objetos de vidro, pois garante suas características e qualidades.


Tipos de vidros recicláveis
  • Garrafas de sucos, refrigerantes, cervejas e outros tipos de bebidas;
  • Potes de alimentos
  • Cacos de vidros
  • Frascos de remédios
  • Frascos de perfumes
  • Vidros planos e lisos
  • Pára-brisas
  • Vidros de janelas
  • Pratos, tigelas e copos (desde que não sejam de acrílico, cerâmica ou porcelana)

Reciclagem dos metais


O metal é um dos produtos mais utilizados nas tarefas do dia-a-dia. Encontramos embalagens de metais, fios e outros produtos metálicos em diversos produtos. Ao ser descartado por pessoas e empresas, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do metal reciclado.
O metal reciclado tem praticamente todas as características do metal comum. Ele pode ser reciclado muitas vezes sem perder suas características e qualidade.
O alumínio, por exemplo, pode ser usado sem limites. O aço após ser reciclado volta para a cadeia produtiva para ser transformado em latas e peças automotivas, por exemplo.


Importância

A reciclagem do metal é de extrema importância para o meio ambiente. Quando reciclamos o metal ou compramos metal reciclado estamos contribuindo com o meio ambiente, pois este material deixa de ir para os aterros sanitários ou para a natureza (rios, lagos, solo, matas). Não podemos esquecer também, que a reciclagem de metal gera renda para milhares de pessoas no Brasil que atuam, principalmente, em cooperativas de catadores e recicladores de metal e outros materiais reciclados. O metal tem um alto valor para a reciclagem.

Coleta seletiva
Uma das etapas mais importantes no processo de reciclagem de metal é a separação e coleta seletiva do metal. Nas empresas, residências e outros locais existem espaços destinados ao descarte de metal.

Separação no processo de reciclagem
Na primeira fase do processo de reciclagem de metal, os mesmos são separados por tipos e características. Desta forma, alumínio, cobre, aço e ferro passam por processos de reciclagem diferentes.



Tipos de metais recicláveis
  • Latas de alumínio (refrigerante, cerveja, etc) e aço (latas de sardinha, molhos, óleo, etc.
  • Arames, pregos, parafusos
  • Fios de metal
  • Tampas de metal
  • Tubos de pasta
  • Panelas sem cabo
  • Arames
  • Chapas de metal
  • Objetos de alumínio (janelas, portas, portões, etc)
  • Fios e objetos de cobre;
  • Ferragens
  • Canos de metal
  • Molduras de quadros
  • Tampinhas de garrafa
  • Tampas metálicas de potes de iogurtes, margarinas, queijos, etc
  • Papel alumínio
Reciclagem do plástico

O plástico é um dos produtos mais utilizados na sociedade atual. Ao ser descartado por pessoas e empresas, pode passar por um processo de reciclagem que garante seu reaproveitamento na produção do plástico reciclado.O plástico reciclado tem praticamente todas as características do plástico comum.


Importância
A reciclagem do plástico é de extrema importância para o meio ambiente. Quando reciclamos o plástico ou compramos plástico reciclado estamos contribuindo com o meio ambiente, pois este material deixa de ir para os aterros sanitários ou para a natureza, poluindo rios, lagos, solo e matas.
Não podemos esquecer também, que a reciclagem de plástico gera renda para milhares de pessoas no Brasil que atuam, principalmente, em empresas e cooperativas de catadores e recicladores de materiais reciclados.


Coleta seletiva
Uma das etapas mais importantes no processo de reciclagem de plástico é a separação e coleta seletiva do Plástico. Nas empresas, condomínios e outros locais existem espaços destinados ao descarte de plástico. Esta é uma atitude extremamente positiva e ecologicamente correta.

Reciclagem de embalagens PET (politereftalato de etileno)
Nas últimas décadas as indústrias, principalmente de bebidas e alimentos, estão substituindo as embalagens de vidro e latas pelas de plástico PET. Por serem mais resistentes e econômicas, o PET já está presente nas embalagens de sucos, águas, óleos e refrigerantes. Quando começou a ser usado, o PET não era reciclado e seu descarte na natureza provocava muita sujeira e poluição ambiental. Atualmente, a reciclagem de PET é praticada em larga escala por cooperativas e empresas de reciclagem. O processo de reciclagem do PET passa pelas seguintes etapas: 1º) As embalagens PET são lavadas e passam por um processo de prensagem; 2º) Os fardos de PET são triturados, gerando os flocos; 3º) Os flocos passam por um processo de extrusão, gerando os grãos; 4º) Os grãos são transformados em fios de poliéster ou outros produtos plásticos.



Tipos de plásticos recicláveis
  • Garrafas PET
  • Potes Plásticos diversos
  • Tampas de embalagens
  • Sacos plásticos diversos
  • Canos de pvc
  • Para-choques de carros
  • Copos descartáveis
  • Plásticos de brinquedos
  • Embalagens de produtos de limpeza
Reciclar baterias e pilhas

Importância


As pilhas e baterias, quando descartadas em lixões ou aterros sanitários, liberam componentes tóxicos que contaminam o solo, os cursos d'água e os lençóis freáticos, afetando a flora e a fauna das regiões circunvizinhas e o homem, pela cadeia alimentar.
Devido a seus componentes tóxicos, as pilhas podem também afetar a qualidade do produto obtido na compostagem de lixo orgânico. Além disso, sua queima em incineradores também não consiste em uma boa prática, pois seus resíduos tóxicos permanecem nas cinzas e parte deles pode volatilizar, contaminando a atmosfera.
Os componentes tóxicos encontrados nas pilhas são: cádmio, chumbo e mercúrio.
Todos afetam o sistema nervoso central, o fígado, os rins e os pulmões, pois eles são bioacumulativos.
O cádmio é cancerígeno, o chumbo pode provocar anemia, debilidade e paralisia parcial, e o mercúrio pode também ocasionar mutações genéticas.

Coleta seletiva
Considerando os impactos negativos causados ao meio ambiente pelo descarte inadequado das pilhas e baterias usadas e a necessidade de disciplinar o descarte e o gerenciamento ambientalmente adequado (coleta, reutilização, reciclagem, tratamento ou disposição final) de pilhas e baterias usadas, a Resolução n° 257/99 do CONAMA resolve em seu artigo primeiro:
"As pilhas e baterias que contenham em suas composições chumbo, cádmio, mercúrio e seus compostos, necessário ao funcionamento de quaisquer tipos de aparelhos, veículos ou sistemas, móveis ou fixos, bem como os produtos eletroeletrônicos que os contenham integrados em sua estrutura de forma não substituível, após seu esgotamento energético, serão entregues pelos usuários aos estabelecimentos que as comercializam ou à rede de assistência técnica autorizada pelas respectivas indústrias, para repasse aos fabricantes ou importadores, para que estes adotem diretamente, ou por meio de terceiros, os procedimentos de reutilização, reciclagem, tratamento ou disposição final ambientalmente adequado".





Reciclagem de entulhos

Entulho é o conjunto de fragmentos ou restos de tijolo, concreto, argamassa, aço, madeira, etc., provenientes do desperdício na construção, reforma e/ou demolição de estruturas, como prédios, residências e pontes.
O entulho de construção compõe-se, portanto, de restos e fragmentos de materiais, enquanto o de demolição é formado apenas por fragmentos, tendo por isso maior potencial qualitativo, comparativamente ao entulho de construção.
Importância
A quantidade de entulho gerado nas construções que são realizadas nas cidades brasileiras demonstra um enorme desperdício de material. Os custos deste desperdício são distribuídos por toda a sociedade, não só pelo aumento do custo final das construções como também pelos custos de remoção e tratamento do entulho.
Na maioria das vezes, o entulho é retirado da obra e disposto clandestinamente em locais como terrenos baldios, margens de rios e de ruas das periferias. As prefeituras comprometem recursos, nem sempre mensuráveis, para a remoção ou tratamento

desse entulho: tanto há  o trabalho de retirar o entulho da margem de um rio como o de limpar galerias e desassorear o leito de córregos onde o material termina por se depositar.
Apesar de causar tantos problemas, o entulho deve ser visto como fonte de materiais de grande utilidade para a construção civil. Seu uso mais tradicional - em aterros - nem sempre é o mais racional, pois ele serve também para substituir materiais normalmente extraídos de jazidas ou pode se transformar em matéria-prima para componentes de construção, de qualidade comparável aos materiais tradicionais.
O processo de reciclagem do entulho, para a obtenção de agregados, basicamente envolve a seleção dos materiais recicláveis do entulho e a trituração em equipamentos apropriados. Os resíduos encontrados predominantemente no entulho, que são recicláveis para a produção de agregados, pertencem aos grupos I e II.
  • Grupo I - materiais compostos de cimento, cal, areia e brita: concretos, argamassa, blocos de concreto.
  • Grupo II - materiais cerâmicos: telhas, manilhas, tijolos, azulejos.
  • Grupo III - materiais não-recicláveis: solo, gesso, metal, madeira, papel, plástico, matéria orgânica, vidro e isopor. Desses materiais, alguns são passíveis de serem selecionados e encaminhados para outros usos. Assim, embalagens de papel e papelão, madeira e mesmo vidro e metal podem ser recolhidos para reutilização ou reciclagem.





Reciclagem de pneus

Os pneus usados podem ser reutilizados após sua recauchutagem. Esta consiste na remoção por raspagem da banda de rodagem desgastada da carcaça e na colocação de uma nova banda. Após a vulcanização, o pneu "recauchutado" deverá ter a mesma durabilidade que o novo.
A economia do processo favorece os pneus mais caros, como os de transporte (caminhão, ônibus, avião), pois neste segmentos os custos são melhor monitorados.
Há limites no número de recauchutagem que um pneu suporta sem afetar seu desempenho. Assim sendo, mais cedo ou mais tarde, os pneus são considerados inutilisáveis e descartados.

Os pneus descartados podem ser reciclados ou reutilizados para diversos fins. Neste caso, são apresentadas, a seguir, várias opções:

Na engenharia civil
O uso de carcaças de pneus na engenharia civil envolve diversas soluções criativas, em aplicações bastante diversificadas, tais como, barreira em acostamentos de estradas, elemento de construção em parques e playgrounds, quebra-mar, obstáculos para trânsito e, até mesmo, recifes artificiais para criação de peixes.

Na regeneração da borracha
O processo de regeneração de borracha envolve a separação da borracha vulcanizada dos demais componentes e sua digestão com vapor e produtos químicos, tais como, álcalis, mercaptanas e óleos minerais. O produto desta digestão é refinado em moinhos até a obtenção de uma manta uniforme, ou extrudado para obtenção de material granulado.
A moagem do pneu em partículas finas permite o uso direto do resíduo de borracha em aplicações similares às da borracha regenerada.



Na geração de energia
O poder calorífico de raspas de pneu equivale ao do óleo combustível, ficando em torno de 40 Mej/kg. O poder calorífico da madeira é por volta de 14 Mej/kg.
Os pneus podem ser queimados em fornos já projetados para otimizar a queima. Em fábricas de cimento, sua queima já é realidade em outros países. A Associação Brasileira de Cimento Portland (ABCP) informa que cerca de 100 milhões de carcaças de pneus são queimadas anualmente nos Estados Unidos com esta finalidade, e que o Brasil já está experimentando a mesma solução.

No asfalto modificado com borracha
O processo envolve a incorporação da borracha em pedaços ou em pó. Apesar do maior custo, a adição de pneus no pavimento pode até dobrar a vida útil da estrada, porque a borracha confere ao pavimento maiores propriedades de elasticidade perante mudanças de temperatura. O uso da borracha também reduz o ruído causado pelo contato dos veículos com a estrada. Por causa destes benefícios, e também para reduzir o armazenamento de pneus velhos, o governo americano requer que 5% do material usado para pavimentar estradas federais seja de borracha moída.


Materiais não recicláveis

A reciclagem é um ato de extrema importância nos dias atuais. Além de ajudar na preservação do meio ambiente, gera renda para milhares de pessoas. Porém, por questões técnicas, nem todos os materiais descartados por pessoas ou indústrias podem passar pelo processo de reciclagem estes, após passarem por processos industriais, não podem ser reutilizados e tem como destino o lixo comum.




Relação de Materiais Não Recicláveis

VIDROS
  • Vidro de automóveis
  • Vidro de janela
  • Espelhos
  • Cristais
  • Lâmpadas (de todos os tipos)
  • Vidro de boxe de banheiro
  • Vidro temperado
  • Ampolas de remédios
PAPÉIS
  • Papel celofane
  • Papel carbono
  • Papel Higiênico
  • Guardanapos e papel toalha com restos de alimentos
  • Papel laminado
  • Papel plastificado
  • Fraldas descartáveis
  • Espuma
  • Etiquetas e adesivos
  • Fotografias
  • Fita Crepe
VIDROS
  • Cerâmicas, porcelanas e louças
  • Acrílicos
  • Boxes temperados
  • Lentes de óculos
  • Tubo de TV
METAIS
  • Latas enferrujadas
  • Clipes e grampos
  • Esponjas de aço
  • Latas de tinta, verniz, inseticida e solvente
  • Aerossóis
ISOPOR
Este material (espécie de plástico) pode ser reciclado. Porém, muitas empresas que trabalham com reciclagem rejeitam o isopor em função do baixo retorno financeiro que representa.

PILHAS E BATERIAS
Pilhas e baterias (embora não recicláveis devem ser coletados separadamente (não descartados com o lixo comum), pois em contato com o meio ambiente podem gerar contaminação do solo e água).
Veja mais aqui.



Reciclagem do óleo de cozinha

Muitos bares, restaurantes, hotéis e residências ainda jogam o óleo utilizado na cozinha direto na rede de esgoto, desconhecendo os prejuízos dessa ação. Independente do destino, esse produto prejudica o solo, a água, o ar e a vida de muitos animais, inclusive o homem.
Quando retido no encanamento, o óleo causa entupimento das tubulações e faz com que seja necessária a aplicação de diversos produtos químicos para a sua remoção. Se não existir um sistema de tratamento de esgoto, o óleo acaba se espalhando na superfície dos rios e das represas, contaminando a água e matando muitas espécies que vivem nesses habitats.
Dados apontam que com um litro de óleo é possível contaminar um milhão de litros de água. Se acabar no solo, o líquido pode impermeabilizá-lo, o que contribui com enchentes e alagamentos. Além disso, quando entra em processo de decomposição, o óleo libera o gás metano que, além do mau cheiro, agrava o efeito estufa.

Despejo correto de óleo

Para evitar que o óleo de cozinha usado seja lançado na rede de esgoto,  cidades, instituições e pessoas de todo o mundo têm criado métodos para reciclar o produto. As possibilidades são muitas: produção de resina para tintas, sabão, detergente, glicerina, ração para animais e até biodiesel.
Esse tipo de combustível já está sendo largamente desenvolvido em todo o mundo. Aqui no Brasil, o Programa das Nações Unidas para o Meio Ambiente (PNUMA) em parceria com a Bayer premiou uma pesquisa da Universidade de São Paulo (USP) sobre produção de biocombustível a partir do óleo de cozinha. A premiação ocorreu em 2007, durante o projeto Jovens Embaixadores Ambientais.
O projeto Biodiesel em casa e nas escolas também conta com a participação de universitários, escolas e empresas que já ajudaram a coletar mais de cem toneladas de óleo de cozinha para ser transformada em combustível 100% renovável.

Processo

Biodisel - A transformação do óleo de cozinha em energia renovável começa pela filtragem, que retira todo o resíduo deixado pela fritura. Depois é removida toda a água misturada ao produto. A depender do óleo, ele passará por uma purificação química que irá retirar os últimos resíduos. Esse óleo "limpo" recebe então a adição de álcool e de uma substância catalisadora. Colocado no reator e agitado a temperaturas específicas, ele se transforma em biocombustível e após o refino pode ser usado em motores capacitados para queimá-lo.
Sabão – Para fazer barras de sabão a partir do óleo de cozinha, basta seguir a receita abaixo:

Materiais:
  • 5 litros de óleo de cozinha usado
  • 2 litros de água
  • 200 mililitros de amaciante
  • 1 quilo de soda cáustica em escama
Preparo:
  1. Coloque cuidadosamente a soda em escamas no fundo de um balde.
  2. Depois, coloque a água fervendo.
  3. Mexa até diluir todas as escamas da soda.
  4. Adicione o óleo e mexa.
  5. Adicione o amaciante e mexa novamente.
  6. Jogue a mistura numa fôrma e espere secar.
  7. Corte o sabão em barras.
Atenção: A soda cáustica pode causar queimaduras na pele. O ideal é usar luvas e utensílios de madeira ou plástico para preparar a mistura.
Outros tipos de soluções podem servir para evitar que o óleo seja jogado nas redes de esgoto. Um produto desenvolvido na Espanha promete solidificar o óleo e facilitar seu armazenamento, coleta e reciclagem. Batizado de Frito Limpio, o produto deve ser jogado no óleo ainda quente e após alguns minutos todo o liquido estará sólido. Basta retirar da frigideira e guardar.
Caso essa solução esteja muito longe de você, basta armazenar a sobra da fritura em uma garrafa PET e entregar em um posto de coleta.

Confira onde doar seu óleo de cozinha utilizado:

Em algumas capitais brasileiras são as prefeituras que estão se mobilizando, em outras, é a própria população através de organizações não-governamentais.

Ribeirão Preto: possui o projeto Cata óleo numa parceria da USP e o Ladetel (Laboratório de Desenvolvimento de Tecnologias Limpas). Os interessados recebem um recipiente para armazenar o óleo. O caminhão do laboratório passa recolhendo o produto em datas pré-estabelecidas.
Todo o óleo recolhido na cidade será usado na produção do biodiesel. Hoje são recolhidos cerca de 20 mil litros de óleo por mês com os comerciantes, no entanto, o interesse é atingir a população e aí receber cerca de 160 mil litros mensalmente.
Informações: interessados em participar do projeto podem entrar em contato com o Ladetel pelo telefone (16) 602.3734.
Curitiba: a Prefeitura Municipal de Curitiba lançou o serviço de coleta especial de óleo de fritura. O recolhimento está sendo feito em 78 pontos do Câmbio Verde (programa de recolhimento de lixo reciclável) e nos 21 terminais de ônibus da cidade. Quando é feita a entrega nestes postos, dois litros de óleo dão direito a um quilo de hortifrutigranjeiros, incentivando ainda mais a população.
Depois de recolhido, o óleo de fritura é encaminhado para a reciclagem, onde é transformado em sabão, detergente e matéria-prima para fabricação de outros produtos.
Para ser entregue, o óleo deve ser armazenado em garrafas pets, de preferência transparentes.
Informações: os dias e horários da coleta podem ser obtidos pelo telefone 156 ou na página da prefeitura na internet - www.curitiba.pr.gov.br
ABC Paulista: o Instituto Triângulo tem sido o exemplo na reciclagem de óleo de cozinha em São Paulo. Equipes vão até o local solicitado para a coleta, desde que se tenha um mínimo de seis litros para solicitar o recebimento. A entrega do óleo em São Paulo também pode ser feita na rede de supermercados Pão de Açúcar ou na Ong Trevo e Samorcc (Sociedade dos Amigos e Moradores do Bairro de Cerqueira César).
Informações: Instituto Triângulo (11) 4991-1112 - www.triangulo.org.br
Florianópolis: a coleta é feita pela Universidade Federal de Santa Catarina que, desde o ano passado, desenvolve o projeto chamado Família Casca, em que recupera o óleo de cozinha e o transforma em combustível. No entanto, o projeto coleta o produto apenas na região próxima à universidade.
Outra maneira de dar um fim útil ao óleo de bares e restaurantes na cidade é por meio da Associação Industrial e Comercial de Florianópolis, a Acif, que dirige o programa ReÓleo.
Informações: www.acif.org.br
Rio de Janeiro: o óleo que seria jogado pode ser levado para os postos implantados pelo Programa de Reaproveitamento de Óleos Vegetais, o Prove, firmado entre a iniciativa privada, a Refinaria de Manguinhos e a Secretaria de Meio Ambiente do Rio. Entre os postos de coleta está o Circo Voador. Outro meio de colaborar é ligar para o Disque-Óleo: basta entrar em contato para a equipe desse programa visitar sua casa
Informações: Disque-Prove: (21) 2598-9240 Disque-óleo: (21) 2260-3326 www.disqueoleo.com.br
Salvador: o engenheiro químico Luciano Hocevar é o responsável pela Renove, Reciclagem de Óleos Vegetais, e pela picape que passa pelas casas da cidade fazendo a coleta do óleo de cozinha.
Informações: (71) 9979-2504 - www.renoveoleo.com.br
Porto Alegre: a Prefeitura de Porto Alegre, através do Departamento Municipal de Limpeza Urbana (DMLU), realiza o Projeto de reciclagem de óleo de fritura. São 24 locais de coleta do produto, que será transformado entre outras coisas em resina de tintas, sabão e biodiesel. Foi assinado convênio entre o DMLU e três empresas, que recolherão óleos de cozinha entregues pela população e os encaminharão para reciclagem.
Informações: http://funverde.wordpress.com
O sucesso destes programas de reciclagem de óleo de cozinha depende inteiramente da participação da comunidade. Todos esses programas de coletas, sejam governamentais ou não-governamentais, oferecem todas as informações necessárias para a reciclagem do óleo e também esclarecimentos sobre proteção ambiental, justamente para inserir a sociedade na responsabilidade ecológica.



Cadeia alimentar

O equilíbrio ecológico depende diretamente da interação, das trocas e das relações que os seres vivos estabelecem entre si e com o ambiente.
Os seres respiram, vivem sobre o solo ou na água, obtêm alimento, aquecem-se com o calor do Sol, abrigam-se, reproduzem-se, morrem, se decompõem etc. Nesses processos, o ar, o solo, a água e a luz solar interagem de forma intensa com as plantas, os animais e os demais seres vivos. Essa interação garante a dinâmica vida da biosfera. A Amazônia, por exemplo, abriga uma rica diversidade biológica que inclui aproximadamente 20% de todas as espécies existentes no planeta. Esse é um fato intimamente relacionado à incidência dos raios solares na região equatorial, à abundância de água e ao sistema de manutenção da umidade e dos nutrientes do solo.

Obtendo Energia para Viver
Todos os seres vivos precisam de energia para produzir as substâncias necessárias à manutenção da vida e à reprodução. Os seres vivos obtêm a energia basicamente de duas maneiras: Os clorofilados, através da energia do Sol, e os não-clorofilados, a partir da alimentação dos clorofilados.
Vamos explicar melhor:
A cadeia alimentar é uma sequêncianismos que mostra quem se alimenta de quem.
Por exemplo:
O ser humano (ser vivo não-clorofilado) ao comer um bife, está mastigando a carne de um boi (ser vivo não-clorofilado) que se alimentou de capim (ser clorofilado). O capim obtém a energia para crescer a partir da luz do Sol, em um processo chamado fotossíntese, e por este motivo é chamado de produtor. Já os organismos não clorofilados são chamados de consumidores. Olhe o esquema abaixo:
Produtores    Consumidores  primários   Consumidores secundários
Capim

Boi


Ser Humano

Produtores
Como exemplos de produtores temos as plantas e as algas, seres clorofilados, que não se alimentam de outro ser vivo obtendo do Sol a sua energia de que necessita para a fotossíntese.
No processo da fotossíntese, as plantas retiram água e sais minerais do solo pelas raízes. Na maioria das plantas, a água é levada até as folhas através de pequenos tubos, os vasos condutores de seiva bruta. A folha retira também um gás do ar, o gás carbônico. As plantas usam então o gás carbônico, a água e a luz solar  absorvida graças à clorofila (pigmento verde presente principalmente nas folhas) para fabricar açúcares. Esse processo é chamado fotossíntese.
Não é só o açúcar que você conhece, usado para adoçar o café e os doces, que é fabricado pelas plantas. O arroz, a batata, a banana, o feijão, o macarrão, ou qualquer outro alimento de origem vegetal, são constituídos de um tipo de açúcar (chamado de amido) também fabricado pelas plantas no processo da fotossíntese.
Além dos açúcares a fotossíntese dá origem ao gás oxigênio. O oxigênio é então lançado no ar ou na água (no caso de plantas aquáticas). E, por fim, os animais e as plantas usam esse gás e o alimento para produzir energia.

Podemos resumir a fotossíntese assim:
gás carbônico + água + luz solar -------> açúcar + oxigênio

Esse esquema pode ser lido da seguinte maneira: o gás carbônico se combina com a água  e com a energia da luz solar transformando-se (a seta indica transformação) em açúcar e oxigênio.
O açúcar produzido pela fotossíntese recebe o nome de glicose. Quando essa glicose é produzida em excesso ela é "guardada" pela planta na forma de amido. O amido nada mais é do que várias moléculas de glicose ligadas uma as outras.




Os seres clorofilados são classificados como produtores porque, utilizando diretamente a energia solar, a água e o gás carbônico, para produzir as substâncias necessárias à manutenção das suas atividades vitais, garantindo o seu crescimento e a sua reprodução.

O pulmão do mundo?
Até pouco tempo, acreditava-se que a região amazônica era a grande responsável pela manutenção dos níveis de oxigênio da terra, sendo popularmente chamada de ‘pulmão da terra’. Porém, recentes pesquisas descobriram a existência de um novo “pulmão”: as algas marinhas. Apesar de se apresentar nas cores verdes, azuis, marrons, amarelas e vermelhas, todas as algas possuem clorofila e fazem fotossíntese. Como são muito numerosas, que se atribui a sua fotossíntese a maior parte de oxigênio existente no planeta.




Todos os seres vivos respiram

Imagine a seguinte situação: depois de dirigir por um tempo, o motorista teve de parar e abastecer o carro. Você já se perguntou para onde vai o combustível? E por que o carro pára se ficar sem combustível?
O combustível se mistura com o oxigênio e é queimado, transformando-se em gás carbônico e água (na forma de vapor), que saem pelo escapamento. Essa queima de gasolina ou de outro combustível é chamada de combustão.
É pela respiração que a energia do alimento é usada para as atividades do organismo. Veja um resumo da respiração:
glicose + oxigênio ----> gás carbônico + água + energia
A energia originada pela respiração será usada para a realização de todas as atividades dos seres vivos. Você, por exemplo, precisa de energia para crescer, andar, correr, falar, pensar e muito mais.

A planta faz fotossíntese e também respira!
A respiração não é feita apenas pelos animais. Todos os seres vivos respiram, inclusive as plantas. Isso quer dizer que as plantas usam, na respiração, parte do alimento que fabricam na fotossíntese. Com isso conseguem energia para o crescimento da raiz, do caule, das folhas, etc. A outra parte da energia (da glicose) produzida pela planta na fotossíntese é armazenada em forma de amido servindo de reserva para a planta. A semente, por exemplo, irá crescer inicialmente com a energia dos açucares que ela armazena.

Do produtor ao consumidor
Nas cadeias alimentares encontramos animais que se alimentam de plantas: são chamados animais herbívoros. Outros animais comem os animais herbívoros: são os carnívoros. E ainda há carnívoros que comem outros carnívoros e animais que comem tanto as plantas quanto outros animais, sendo chamados de onívoros. Todos esses organismos que se alimentam de outros seres são chamados de consumidores.


Para simplificar chamamos o primeiro consumidor da cadeia, isto é, os animais herbívoros, de consumidores primários ou consumidores de primeira ordem. Os animais que vêm logo em seguida são classificados como consumidores secundários. Os seguintes são consumidores terciários, quaternários e assim por diante. Podem existir consumidores de quinta ordem ou mais, mas as cadeias não vão muito além disso.




A Reciclagem da Natureza: Os Decompositores

Papel, latas, garrafas, para fabricar esses e outros materiais o ser humano consome diversos produtos da natureza, como metais e árvores. À medida que a população aumenta, o consumo de matérias-primas também cresce, mais árvores são derrubadas, mais minerais são extraídos do solo, novas usinas de energia têm de ser construídas.
Uma das maneiras de diminuir os problemas que o ser humano provoca na natureza ao extrair tantos recursos seria aumentar a reciclagem, isto é, o reaproveitamento de diversos materiais. Com isso, economizamos energia e diminuímos a destruição dos recursos naturais. Pense quantas árvores podem deixar de ser abatidas se reciclarmos o papel dos jornais, por exemplo, para fabricar outros papéis.

Nos ambientes naturais, ocorre um tipo de reciclagem feito por diversos organismos que se alimentam de plantas e animais mortos e também de fezes e urina. Os principais organismos que realizam esse trabalho são as bactérias e os fungos (ou cogumelos). São esses organismos que fazem uma fruta apodrecer, por exemplo.
Esses seres da mesma forma que os animais e as plantas precisam de energia para as suas atividades. A diferença, porém, é que seu alimento são "restos" de outros seres vivos.
Assim, quando parte de uma planta cai no solo ou um animal morre, os açúcares, as gorduras e as proteínas que formam seu corpo são atacados por bactérias e fungos e transformados em gás carbônico, água e sais minerais pela respiração desses organismos.
Por sua vez, essas substâncias (o gás carbônico, a água e  os sais minerais) são liberadas para o ambiente e podem ser reaproveitas pelas plantas na construção de açucares, proteínas e outras substâncias que vão formar seu corpo.
Esse processo, realizado principalmente por bactérias e fungos, é chamado decomposição. Bactérias e fungos são exemplos de organismos decompositores.
A decomposição faz a matéria que é retirada do solo pelas plantas (e aproveitada em seu crescimento) voltar ao solo. Dizemos então que há um ciclo da matéria na natureza: a matéria passa do solo para os seres vivos e dos seres vivos para o solo.
Imagine o que aconteceria se a decomposição fosse interrompida: cadáveres e lixo iriam se acumular e faltariam às plantas diversos minerais necessários para a sobrevivência. Consequentemente, sem plantas, os animais também não teriam alimento.

Podemos reciclar energia?
Uma lâmpada transforma energia elétrica em luz. Mas uma parte da energia elétrica é transformada também em calor: a lâmpada esquenta quando está ligada. Um rádio transforma energia elétrica em som, mas ele também esquenta, porque uma parte da energia elétrica é transferida sob forma de calor para o ambiente.
Os seres vivos também estão sempre liberando para o ambiente uma parte da energia dos alimentos sob forma de calor. Mas, como você já sabe, a energia usada pela planta na fotossíntese vem da luz do Sol e não do calor gerado pelos organismos.
Desse modo ao contrário do que ocorre com a matéria, a energia não é completamente reciclada nas cadeias alimentares. De onde, então, vem a energia? Do Sol. É o Sol que constantemente fornece, energia sob a forma de luz.
Você pode perceber então a importância do Sol: ele é a fonte de energia que mantém a fotossíntese na Terra e, conseqüentemente, todas as formas de vida.

A teia alimentar

Na natureza, alguns seres podem ocupar vários papéis em diferentes cadeias alimentares. Quando comemos uma maçã, por exemplo, ocupamos o papel de consumidores primários. Já ao comer um bife, somos consumidores secundários, pois o boi, que come o capim, é consumidor primário.
Muitos outros animais também têm alimentação variada. Um organismo pode se alimentar de diferentes seres vivos, além de servir de alimento para diversos outros. O resultado é que as cadeias alimentares se cruzam na natureza, formando o que chamamos de teia alimentar.
Nas teias alimentares, um mesmo animal pode ocupar papéis diferentes, dependendo da cadeia envolvida. Na teia representada no esquema abaixo (siga as setas) o gavião ocupa tanto o papel de consumidor secundário quanto terciário.

(Produtores)                          (Consumidor primário)        (Consumidor secundário)
Plantas, frutos e sementes    Pica-Pau         Gavião
ou
(Produtores)              (Consumidor primário)  (Consumidor secundário)  (Consumidor terciário)
Plantas, frutos e sementes Pica-Pau       Sucuri         Gavião



As plantas nunca mudam o seu papel: são sempre produtores. E todos os produtores e consumidores, estão ligados aos decompositores, que permitem a reciclagem da matéria orgânica no ambiente.



Acúmulo de substâncias na cadeia alimentar

No início dos anos 50, em um lago dos Estados Unidos, foi usado um inseticida, um produto químico que destrói mosquitos. A quantidade aplicada foi mínima.
Cinco anos depois, porém, começaram a aparecer mergulhões mortos no lago. Uma pesquisa mostrou que essas aves morreram intoxicadas pelo inseticida. Os pesquisadores descobriram que o inseticida havia entrado na cadeia alimentar. Primeiro, as algas microscópicas do lago absorveram o inseticida; depois, os peixes pequenos se alimentaram dessas algas; os peixes maiores comeram os menores; e por fim, os mergulhões comeram os peixes maiores.

O inseticida usado no lago pertencia a um grupo de substâncias que permaneceu no ambiente por centenas de anos sem se decompor, ou se decompondo muito lentamente. E, da mesma forma, quando ingeridas, essas substâncias em geral demoram bastante para serem eliminadas pelo organismo.
Outros exemplos de elementos que o organismo dos seres vivos tem dificuldade em decompor e eliminar são o chumbo e o mercúrio. Se ingeridas com determinada freqüência, essas substâncias vão se acumulando no organismo e provocando doenças.
Em  certas regiões do Brasil, os garimpeiros usam mercúrio para separar o ouro da areia. Uma parte do mercúrio se espalha na água e se perde. Resultado: os próprios garimpeiros correm risco de se contaminar diretamente e, além disso, as águas dos rios tornam-se perigosas, com alta taxa de mercúrio. Esse mercúrio pode, com o tempo, se depositar no corpo das pessoas que se alimentam de peixes.





www.sobiologia.com.br

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de