cead20136

sábado, 1 de outubro de 2016

Tabuada

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        



No meu tempo, quando estava a aprender multiplicação, era adotado como material didático a velha tabuada composta de pelo menos nove páginas. Uma para a tabuada do 1, outra para a do 2, e assim em diante. Cada página com 10 linhas, onde cada linha tinha a indicação do produto e seu resultado (2 x 1 = 2, …, 2 x 10 = 20). Se o seu objetivo é obter a tabuada de multiplicação de um número clique aqui.

Pitágoras, filósofo e matemático grego, século VI antes de Cristo (veja há quanto tempo!), inventou a tabela abaixo, na qual é possível efetuar todas as operações de multiplicação existentes na velha tabuada. E tudo em um único lugar.
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

Para se calcular, por meio desta tabela, o produto de dois números, 5 x 9 por exemplo, basta localizar o multiplicando (5) na primeira linha e o multiplicador (9) na primeira coluna. O resultado do produto está no encontro da linha com a coluna.

Observe que alguns conceitos adicionais podem ser explorados a partir daqui:

* O de uma composição tabular (matriz) – não estou dizendo que uma criança vá entendê-lo em toda a sua plenitude;
* Mostrar que em uma multiplicação a ordem dos fatores não altera o resultado, fazendo a operação 9 x 5 diretamente na tabela;
* Obter resultados de divisões exatas, claro dentro deste universo. Por exemplo: 36:9.

A tabuada de Pitágoras, é óbvio, deve ser utilizada dentro dos mesmos princípios didáticos e curriculares da tabuada tradicional, ou seja, após as devidas explicações do que seja uma multiplicação e uma divisão. No entanto, acredito que o uso da tabuada de Pitagóras tornaria, pelo menos, o aprendizado mais divertido.

A composição da tabela é bem simples: na coluna um encontram-se “os resultados da tabuada do 1″, na dois “os resultados da tabuada do 2″, e assim por diante.

Área de uma região triangular através do determinante

Bem, sabemos que os elementos que fundamentam a geometria analítica são os pontos e suas coordenadas, já que através destes podemos calcular distâncias, coeficientes angulares das retas e áreas de figuras planas.
Dentre os cálculos das áreas de figuras planas, existe uma expressão que determina a área de uma região triangular utilizando apenas as coordenadas dos vértices do triângulo.
Portanto, consideremos um triângulo com vértices de coordenadas quaisquer e assim vejamos como calcular a área desse triângulo apenas com as coordenadas dos seus vértices.
Triângulo no plano cartesiano

O parâmetro D é determinado pela matriz das coordenadas dos vértices do triângulo ABC.
Note que o parâmetro D é a mesma matriz determinante para verificar a condição de alinhamento de três pontos (ver Condição de alinhamento de três pontos).
Assim sendo, caso você verifique a área de um suposto triângulo e o determinante dê zero, saiba que na verdade esses três pontos não constituem um triângulo, pois estão alinhados (por isso a área é zero).
Uma observação importante em relação à expressão para o cálculo da área é quanto ao Parâmetro D estar em módulo, ou seja, usaremos o seu valor absoluto. Por se tratar de área, não devemos adotar um determinante negativo, pois isso resultará em uma área negativa e isso não existe.
Vejamos um exemplo para uma melhor compreensão:
“Determine a área da região triangular que tem como vértices os pontos A (4,0), B (0,0) e C (2,2)”.
Portanto, a área da região triangular do triângulo ABC é de 4 u.a (unidades de área).

  Gabriel Alessandro de Oliveira

Propriedades dos determinantes

Propriedades dos determinantes

Marcelo Rigonatto




Determinantes
O cálculo dos determinantes pode ser facilitado se analisarmos as características e propriedades de algumas matrizes. Há algumas propriedades que, se bem observadas, podem fazer com que economizemos tempo na realização desses cálculos. Vejamos quais são essas propriedades e como elas podem nos ajudar.

Propriedade 1.

Quando todos os elementos de uma linha ou coluna são iguais a zero, o determinante da matriz é nulo.

Exemplo:

Propriedade 2.

Se duas linhas ou duas colunas de uma matriz forem iguais, seu determinante será nulo.

Exemplo:

Propriedade 3.

Se duas linhas ou duas colunas de uma matriz forem proporcionais, então seu determinante será nulo.

Exemplo:

Propriedade 4.

Se todos os elementos de uma linha ou de uma coluna da matriz forem multiplicados por um número real p qualquer, então seu determinante também será multiplicado por p.

Exemplo:

Propriedade 5.

Se uma matriz A, quadrada de ordem m, for multiplicada por um número real p qualquer, então seu determinante será multiplicado por pm.

det (p∙A) = pm∙det A

Exemplo:

Propriedade 6.

O determinante de uma matriz é igual ao determinante de sua transposta.
det A=det At

Exemplo:

Propriedade 7.

Se trocarmos de posição duas linhas ou duas colunas de uma matriz, seu determinante será o oposto da matriz anterior.

Exemplo:

Propriedade 8.

Se os elementos acima ou abaixo da diagonal principal forem iguais a zero, então o determinante da matriz será o produto dos elementos da diagonal principal.

Exemplo:


Propriedade 9.

O determinante do produto de duas matrizes é igual ao produto dos determinantes de cada uma delas.
det (A∙B) = det A ∙ det B

Propriedade 10.

Teorema de Jacob: o determinante de uma matriz não se altera quando somamos aos elementos de uma fila uma combinação linear dos elementos correspondentes de filas paralelas.

Exemplo:

Se somarmos os elementos da coluna 1 com o dobro dos elementos da coluna 2, o determinante não irá se alterar.

Teorema de Cramer (calculando matrizes)

O Teorema de Cramer foi elaborado por Gabriel Cramer, e serve para acharmos a solução de qualquer sistema linear, com n equações e n incógnitas.

Exemplo de uma equação linear simples, com duas equações e duas incógnitas:

x+2y = 8
3x – y = 3

Fórmula
Para resolver um sistema linear com o teorema de Cramer, devemos calcular primeiro três valores: ∆p , ∆x e ∆y . Eles são encontrados da seguinte forma:

Perceba que, na tabela acima, as colunas correspondem aos valores que estão na frente das duas equações inicialmente dadas (os coeficientes de x e y). x por exemplo, ficará 1, 3x, ficará 3, 2y, ficará 2, e -y, ficará -1. Os números são colocados na posição igual à das equações, e multiplicados em “xis”. O resultado da segunda multiplicação (2 . 3)deve ser subtraído da primeira (1 . (-1) . Então no final teremos, -7 para ∆p. Agora, temos que calcular ∆x e ∆y. É a mesma coisa, só que no lugar dos valores de x e y, colocamos os valores dos resultados das equações. Observe:

agora é a mesma coisa com o ∆y, trocamos os valores de y pelos resultados das equações:

Agora, finalmente vamos descobrir os valores de x e y.

x = ∆x/∆p

logo:

x = -14 / -7 = 2

e y:

y = ∆y/∆p

logo:

y = -21 / -7 = 3

Para comprovar os resultados, basta trocar x e y por 2 e 3 nas equações dadas:

x+2y = 8
3x – y = 3

2+(2.3) = 2+6 = 8
(3.2) – 3 = 6 – 3 = 3
www.infoescola.com

Matrizes

Matrizes
Introdução
O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais aplicada em áreas como Economia, Engenharia, Matemática, Física, dentre outras. Vejamos um exemplo.
A tabela a seguir representa as notas de três alunos em uma etapa:

Química
Inglês
Literatura
Espanhol
A
8
7
9
8
B
6
6
7
6
C
4
8
5
9
Se quisermos saber a nota do aluno B em Literatura, basta procurar o número que fica na segunda linha e na terceira coluna da tabela.
Vamos agora considerar uma tabela de números dispostos em linhas e colunas, como no exemplo acima, mas colocados entre parênteses ou colchetes:
Em tabelas assim dispostas, os números são os elementos. As linhas são enumeradas de cima para baixo e as colunas, da esquerda para direita:
Tabelas com m linhas e n colunas ( m e n números naturais diferentes de 0) são denominadas matrizes m x n. Na tabela anterior temos, portanto, uma matriz 3 x 3.
Veja mais alguns exemplos:
  • é uma matriz do tipo 2 x 3
  • é uma matriz do tipo 2 x 2
Notação geral
Costuma-se representar as matrizes por letras maiúsculas e seus elementos por letras minúsculas, acompanhadas por dois índices que indicam, respectivamente, a linha e a coluna que o elemento ocupa.
Assim, uma matriz A do tipo m x n é representada por:
ou, abreviadamente, A = [aij]m x n, em que i e j representam, respectivamente, a linha e a coluna que o elemento ocupa. Por exemplo, na matriz anterior, a23 é o elemento da 2ª linha e da 3ª coluna.
Na matriz , temos:
Ou na matriz B = [ -1 0 2 5 ], temos: a11 = -1, a12 = 0, a13 = 2 e a14 = 5.
Denominações especiais
Algumas matrizes, por suas características, recebem denominações especiais.
  • Matriz linha: matriz do tipo 1 x n, ou seja, com uma única linha. Por exemplo, a matriz A =[4 7 -3 1], do tipo 1 x 4.
  • Matriz coluna: matriz do tipo m x 1, ou seja, com uma única coluna. Por exemplo,, do tipo 3 x 1
  • Matriz quadrada: matriz do tipo n x n, ou seja, com o mesmo número de linhas e colunas; dizemos que a matriz é de ordem n. Por exemplo, a matriz é do tipo 2 x 2, isto é, quadrada de ordem 2.
Numa matriz quadrada definimos a diagonal principal e a diagonal secundária. A principal é formada pelos elementos aij tais que i = j. Na secundária, temos i + j = n + 1.
Veja:
Observe a matriz a seguir:
a11 = -1 é elemento da diagonal principal, pis i = j = 1
a31= 5 é elemento da diagonal secundária, pois i + j = n + 1 ( 3 + 1 = 3 + 1)
  • Matriz nula: matriz em que todos os elementos são nulos; é representada por 0m x n.
Por exemplo, .
  • Matriz diagonal: matriz quadrada em que todos os elementos que não estão na diagonal principal são nulos. Por exemplo:

  • Matriz identidade: matriz quadrada em que todos os elementos da diagonal principal são iguais a 1 e os demais são nulos; é representada por In, sendo n a ordem da matriz. Por exemplo:

Assim, para uma matriz identidade .
  • Matriz transposta: matriz At obtida a partir da matriz A trocando-se ordenadamente as linhas por colunas ou as colunas por linhas. Por exemplo:
Desse modo, se a matriz A é do tipo m x n, At é do tipo n x m.
Note que a 1ª linha de A corresponde à 1ª coluna de At e a 2ª linha de A corresponde à 2ª coluna de At.
  • Matriz simétrica: matriz quadrada de ordem n tal que A = At . Por exemplo,
é simétrica, pois a12 = a21 = 5, a13 = a31 = 6, a23 = a32 = 4, ou seja, temos sempre a ij = a ij.
  • Matriz oposta: matriz -A obtida a partir de A trocando-se o sinal de todos os elementos de A. Por exemplo, .
Igualdade de matrizes
Duas matrizes, A e B, do mesmo tipo m x n, são iguais se, e somente se, todos os elementos que ocupam a mesma posição são iguais:
.
Operações envolvendo matrizes
Adição
Dadas as matrizes , chamamos de soma dessas matrizes a matriz , tal que Cij = aij + bij , para todo :

A + B = C
Exemplos:

Observação: A + B existe se, e somente se, A e B forem do mesmo tipo.
Propriedades
Sendo A, B e C matrizes do mesmo tipo ( m x n), temos as seguintes propriedades para a adição:
a) comutativa: A + B = B + A
b) associativa: ( A + B) + C = A + ( B + C)
c) elemento neutro: A + 0 = 0 + A = A, sendo 0 a matriz nula m x n
d) elemento oposto: A + ( - A) = (-A) + A = 0
Subtração
Dadas as matrizes , chamamos de diferença entre essas matrizes a soma de A com a matriz oposta de B:

A - B = A + ( - B )
Observe:
Multiplicação de um número real por uma matriz
Dados um número real x e uma matriz A do tipo m x n, o produto de x por A é uma matriz B do tipo m x n obtida pela multiplicação de cada elemento de A por x, ou seja, bij = xaij:

B = x.A
Observe o seguinte exemplo:
Propriedades
Sendo A e B matrizes do mesmo tipo ( m x n) e x e y números reais quaisquer, valem as seguintes propriedades:
a) associativa: x . (yA) = (xy) . A
b) distributiva de um número real em relação à adição de matrizes: x . (A + B) = xA + xB
c) distributiva de uma matriz em relação à adição de dois números reais: (x + y) . A = xA + yA
d) elemento neutro : xA = A, para x=1, ou seja, A=A
Multiplicação de matrizes
O produto de uma matriz por outra não é determinado por meio do produto dos sus respectivos elementos.
Assim, o produto das matrizes A = ( aij) m x p e B = ( bij) p x n é a matriz C = (cij) m x n em que cada elemento cij é obtido por meio da soma dos produtos dos elementos correspondentes da i-ésima linha de A pelos elementos da j-ésima coluna B.
Vamos multiplicar a matriz para entender como se obtém cada Cij:
  • 1ª linha e 1ª coluna
  • 1ª linha e 2ª coluna
  • 2ª linha e 1ª coluna
  • 2ª linha e 2ª coluna
Assim, .
Observe que:
Portanto, .A, ou seja, para a multiplicação de matrizes não vale a propriedade comutativa.
Vejamos outro exemplo com as matrizes :

Da definição, temos que a matriz produto A . B só existe se o número de colunas de A for igual ao número de linhas de B:
A matriz produto terá o número de linhas de A (m) e o número de colunas de B(n):
  • Se A3 x 2 e B 2 x 5 , então ( A . B ) 3 x 5
  • Se A 4 x 1 e B 2 x 3, então não existe o produto
  • Se A 4 x 2 e B 2 x 1, então ( A . B ) 4 x 1
Propriedades
Verificadas as condições de existência para a multiplicação de matrizes, valem as seguintes propriedades:
a) associativa: ( A . B) . C = A . ( B . C )
b) distributiva em relação à adição: A . ( B + C ) = A . B + A . C ou ( A + B ) . C = A . C + B . C
c) elemento neutro: A . In = In . A = A, sendo In a matriz identidade de ordem n
Vimos que a propriedade comutativa, geralmente, não vale para a multiplicação de matrizes. Não vale também o anulamento do produto, ou seja: sendo 0 m x n uma matriz nula, A .B =0 m x n não implica, necessariamente, que A = 0 m x n ou B = 0 m x n.

Matriz inversa
Dada uma matriz A, quadrada, de ordem n, se existir uma matriz A', de mesma ordem, tal que A . A' = A' . A = In , então A' é matriz inversa de A . representamos a matriz inversa por A-1 .
www.somatematica.com.br