Mostrando postagens com marcador 3º Ano Ensino Médio. Mostrar todas as postagens
Mostrando postagens com marcador 3º Ano Ensino Médio. Mostrar todas as postagens

quinta-feira, 16 de setembro de 2021

Arranjos

São agrupamentos formados com p elementos, (p
Simples
Não ocorre a repetição de qualquer elemento em cada grupo de p elementos.
Fórmula: As(m,p) = m!/(m-p)!
Cálculo para o exemplo: As(4,2) = 4!/2!=24/2=12
Exemplo: Seja Z={A,B,C,D}, m=4 e p=2. Os arranjos simples desses 4 elementos tomados 2 a 2 são 12 grupos que não podem ter a repetição de qualquer elemento mas que podem aparecer na ordem trocada. Todos os agrupamentos estão no conjunto:

As={AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC}

Com repetição
Todos os elementos podem aparecer repetidos em cada grupo de p elementos.
Fórmula: Ar(m,p) = mp
Cálculo para o exemplo: Ar(4,2) = 42=16
Exemplo: Seja C={A,B,C,D}, m=4 e p=2. Os arranjos com repetição desses 4 elementos tomados 2 a 2 são 16 grupos que onde aparecem elementos repetidos em cada grupo. Todos os agrupamentos estão no conjunto:

Ar={AA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}

Condicional
Todos os elementos aparecem em cada grupo de p elementos, mas existe uma condição que deve ser satisfeita acerca de alguns elementos.
Fórmula: N=A(m1,p1).A(m-m1,p-p1)
Cálculo para o exemplo: N=A(3,2).A(7-3,4-2)=A(3,2).A(4,2)=6×12=72
Exemplo: Quantos arranjos com 4 elementos do conjunto {A,B,C,D,E,F,G}, começam com duas letras escolhidas no subconjunto {A,B,C}?

Aqui temos um total de m=7 letras, a taxa é p=4, o subconjunto escolhido tem m1=3 elementos e a taxa que este subconjunto será formado é p1=2. Com as letras A,B e C, tomadas 2 a 2, temos 6 grupos que estão no conjunto:

PABC = {AB,BA,AC,CA,BC,CB}
Com as letras D,E,F e G tomadas 2 a 2, temos 12 grupos que estão no conjunto:

PDEFG = {DE,DF,DG,ED,EF,EG,FD,FE,FG,GD,GE,GF}
Usando a regra do produto, teremos 72 possibilidades obtidas pela junção de um elemento do conjunto PABC com um elemento do conjunto PDEFG. Um típico arranjo para esta situação é CAFG.
---------------------------------------------------------
Permutações
Quando formamos agrupamentos com m elementos, de forma que os m elementos sejam distintos entre sí pela ordem. As permutações podem ser simples, com repetição ou circulares.

Simples
São agrupamentos com todos os m elementos distintos.
Fórmula: Ps(m) = m!
Cálculo para o exemplo: Ps(3) = 3!=6
Exemplo: Seja C={A,B,C} e m=3. As permutações simples desses 3 elementos são 6 agrupamentos que não podem ter a repetição de qualquer elemento em cada grupo mas podem aparecer na ordem trocada. Todos os agrupamentos estão no conjunto:

Ps={ABC,ACB,BAC,BCA,CAB,CBA}

Com repetição
Dentre os m elementos do conjunto C={x1,x2,x3,...,xn}, faremos a suposição que existem m1 iguais a x1, m2 iguais a x2, m3 iguais a x3, ... , mn iguais a xn, de modo que m1+m2+m3+...+mn=m.
Fórmula: Se m=m1+m2+m3+...+mn, então

Pr(m)=C(m,m1).C(m-m1,m2). C(m-m1-m2,m3) ... C(mn,mn)
Anagrama: Um anagrama é uma (outra) palavra construída com as mesmas letras da palavra original trocadas de posição.

Cálculo para o exemplo: m1=4, m2=2, m3=1, m4=1 e m=6, logo: Pr(6)=C(6,4).C(6-4,2).C(6-4-1,1)=C(6,4).C(2,2).C(1,1)=15
Exemplo: Quantos anagramas podemos formar com as 6 letras da palavra ARARAT. A letra A ocorre 3 vezes, a letra R ocorre 2 vezes e a letra T ocorre 1 vez. As permutações com repetição desses 3 elementos do conjunto C={A,R,T} em agrupamentos de 6 elementos são 15 grupos que contêm a repetição de todos os elementos de C aparecendo também na ordem trocada. Todos os agrupamentos estão no conjunto:

Pr={AAARRT,AAATRR,AAARTR,AARRTA,AARTTA,
AATRRA,AARRTA,ARAART,ARARAT,ARARTA,
ARAATR,ARAART,ARAATR,ATAARA,ATARAR}

Circulares
Ocorre quando obtemos grupos com m elementos distintos formando uma circunferência de círculo.
Fórmula: Pc(m) = (m-1)!
Cálculo para o exemplo: P(4)=3!=6
Exemplo: Seja um conjunto com 4 pessoas K={A,B,C,D}. De quantos modos distintos estas pessoas poderão sentar-se junto a uma mesa circular (pode ser retangular) para realizar o jantar sem que haja repetição das posições?

Se considerássemos todas as permutações simples possíveis com estas 4 pessoas, teriamos 24 grupos, apresentados no conjunto:

Pc={ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,
BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,
CDAB,CDBA, DABC,DACB,DBAC,DBCA,DCAB,DCBA}
Acontece que junto a uma mesa "circular" temos que:

ABCD=BCDA=CDAB=DABC
ABDC=BDCA=DCAB=CABD
ACBD=CBDA=BDAC=DACB
ACDB=CDBA=DBAC=BACD
ADBC=DBCA=BCAD=CADB
ADCB=DCBA=CBAD=BADC
o que significa existem somente 6 grupos distintos, dados por:

Pc={ABCD,ABDC,ACBD,ACDB,ADBC,ADCB}
Extraido do colaweb

Triângulo de Pascal ou Tartaglia

O triângulo de Pascal tem o objetivo de dispor os coeficientes binomiais, de modo que os coeficientes de mesmo numerador agrupem-se em uma mesma linha, e coeficientes de mesmo denominador agrupem-se na mesma coluna. O coeficiente binomial de dois números naturais é expresso por: . O número n é o numerador e o p, o denominador.

Observe a distribuição no triângulo:



Calculando os valores dos coeficientes, obtemos outra forma de expressar o triângulo de Pascal ou Tartaglia:



O triângulo apresenta algumas propriedades fundamentais. Veja:

Cada linha inicia e termina com o número 1.

Em cada linha, os termos equidistantes dos extremos possuem valor igual.
Linha 8



Linha 9

A partir da 2º linha, podemos perceber que cada elemento, com exceção do primeiro e do último, é igual à soma de dois elementos da linha anterior, a saber: o elemento imediatamente acima e o anterior. Observe:



A soma dos elementos de cada linha do triângulo é a potência de base 2 elevado ao expoente referente à linha. Observe:

www.mundoeducacao.com.br

OPERAÇÕES COM POLINÔMIOS



ADIÇÃO DE POLINÔMIOS



EXEMPLO

Vamos calcular:

(3x²- 6x + 4) + (2x² + 4x – 7)=
=3x²-6x+4+2x²+4x-7=
=3x²+2x²-6x+4x+4-6=
=5x²-2x-3



EXERCÍCIOS

1) Efetue as seguintes adições de polinômios:

a) (2x²-9x+2)+(3x²+7x-1) _______ (R:5x² -2x + 1)
b) (5x²+5x-8)+(-2x²+3x-2) ______ (R:3x² + 8x - 10)
c) (3x-6y+4)+(4x+2y-2) ________ (R:7x -4y +2)
d) (5x²-7x+2)+(2x²+7x-1) _______ (R:7x²+ 1)
e) (4x+3y+1)+(6x-2y-9) _________ (R:10x +1y-8)
f) (2x³+5x²+4x)+(2x³-3x²+x) _____ (R:4x³ +2x²+ 5x)
g) (5x²-2ax+a²)+(-3x²+2ax-a²) ____ (R: 2x²)
h) (y²+3y-5)+(-3y+7-5y²) ________ (R: -4y² + 2)
i) (x²-5x+3)+(-4x²-2x) __________ (R:-3x² - 7x + 3)
j) (9x²-4x-3)+(3x²-10) __________ (R:12x² -4x- 13)



SUBTRAÇÃO DE POLINÔMIOS

EXEMPLOS

Vamos calcular:

(5x²-4x+9)-(8x²-6x+3)=
=5x²-4x+9-8x²+6x-3=
=5x²-8x²-4x+6x+9-3=
=-3x²+2x+6

EXERCICIOS

1) Efetue as seguintes subtrações:
a) (5x²-4x+7)-(3x²+7x-1) _____ (R: 2x² - 11x + 8)
b) (6x²-6x+9)-(3x²+8x-2) _____ (R: 3x² - 14x + 11)
c) (7x-4y+2)-(2x-2y+5) _______ (R: 5x - 2y – 3)
d) (4x-y-1)-(9x+y+3) _________ (R: -5x – 2y – 4)
e) (-2a²-3ª+6)-(-4a²-5ª+6) _____ ( R: -2a² +2a)
f) (4x³-6x²+3x)-(7x³-6x²+8x) ___ (R: -3x³ - 5x)
g) (x²-5x+3)-(4x²+6) _________ (R: -3x² -5x -3)
h) (x²+2xy+y²)-(y²+x²+2xy) ____ (R: 0)
i) (7ab+4c-3a)-(5c+4a-10) ______ (R: 7ab -c-7a + 10)


MULTIPLICAÇÃO DE POLINÔMIOS


EXEMPLOS

1) 4x(2x-3y ) =
=4x. 2x – 4x.3y
=8x² - 12xy

2) (3x + 5) . (x + 2)
= 3x(x+2) + 5(x + 2)=
=3x²+6x+5x+10
= 3x² + 11x + 10


EXERCICIOS

1) Calcule os produtos

a) 3(x+y) ____ (R: 3x +3y)
b) 7(x-2y) ___ (R: 7x - 14y)
c) 2x(x+y) ___ (R: 2x² + 2xy)
d) 4x (a+b) ___ (R: 4xa + 4xb)
e) 2x(x²-2x+5) _ (R:2x³ - 4x² + 10x)
f) (x+5).(x+2) __ (R: x² +7x +10)
g) (3x+2).(2x+1) __ (R: 6x² +7x + 2)
h) (x+7).(x-4) ____ (R: x² +3x -28)
i) (3x+4).(2x-1) ___ (R: 6x² +5x -4)
j) (x-4y).(x-y) ____ (R: x² -5xy + 4y²)
k) (5x-2).(2x-1) ___ (R: 10x² -9x + 2)
l) (3x+1).(3x-1) ___ (R: 9x² - 1)
m) (2x+5).(2x-5) __ (R: 4x² - 25)
n) (6x²-4).(6x²+4) __ (R:
o) (3x²-4x-3).(x+1) __ (R: 3x³ - 1x² - 7x -3)
p) (x²-x-1).(x-3) _____ (R: x³ - 4x² + 2x + 3)
q) (x-1).(x-2).(x-3) ____ (R: x³ - 6x² - 3x - 9)
r) (x+2).(x-1).(x+3) ____ (R: x³ + 4x² + 3x + 1)
s) (x³-2).(x³+8) _______ (R:
t) (x²+2).(x²+6) _______ (R:



DIVISÃO DE UM POLINOMIO POR UM MONOMIO

Vamos efetuar as divisões:

a) (8x⁵ - 6x⁴) : (+2x) = 4x⁴ - 3x³
b) (15x³ - 4x²) : (-5x) = -3x² + 4x/5


Conclusão:Dividimos cada termo do polinômio pelo monômio.

EXERCÍCIOS

1) Efetue as divisões:
a) ( 12x² - 8x) : (+2x) =
b) (3y³ + 6y²) : (3y) =
c) ( 10x² + 6x) : (-2x) =
d) (4x³ - 9x) : (+3x) =
e) ( 15x³ - 10x²) : (5x²)
f) (30x² - 20xy) : (-10x)
g) (-18x² + 8x) : (+2x)
h) (6x²y – 4xy²) : (-2x)

2) Efetue as Divisões:

a) ( x³ + 2x² + x ) : (+x) =
b) (x² + x³ + x⁴) : (+x²) =
c) (3x⁴ - 6x³ + 10x²) : (-2x²) =
d) (x⁷ + x⁵ + x³) : (-x²) =
e) (3x²y – 18xy²) : (+3xy) =
f) (7x³y – 8x²y²) : (-2xy) =
g) (4x²y + 2xy – 6xy²) : (-2xy) =
h) (20x¹² - 16x⁸ - 8x⁵) : ( +4x⁴) =
i) (3xy⁴ + 9x²y – 12xy²) : (+3xy) =

DIVISÃO DE POLINÔMIO POR POLINÔMIO
explicaremos como se efetua a divisão de polinômios pelo método de chaves, por meio de exemplos.





Exemplo 1



Vamos efetuar a divisão:

(2x² - 5x - 12) : ( x -4)

Observe que os polinômios estão ordenados segundo as potências decrescentes de x.

a)Coloque o polinômio assim:

















b) Divida o primeiro termo do dividendo (2x²) pelo primeiro termo do divisor (x) e obtenha o primeiro termo do quosciente (2x)
















c) Multiplique o primeiro termo do quosciente (2x) pelos termos do divisor , colocando os produtos com sinais trocados embaixo dos termos semelhantes do dividendo. A seguir , reduza so termos semelhantes:












Exemplo 2

Vamos calcular a divisão









Terminamos a divisão, pois o grau de x - 1 (resto) é inferior ao de 2x² - 3x + 1 (divisor)

logo: quociente : 3x² - x - 6
resto: x -1


EXERCICIOS

1) Calcule os quocientes:

a) ( x² + 5x + 6) : (x + 2)
b) (x² - 7x + 10 ) : ( x - 2)
c) (2x² + 6x + 4 ) : ( x + 1)
d) ( x³ - 6x² + 11x – 6) : ( x – 3)
e) ( 7x³ + 27x² - 3x + 4 ) : ( x + 4)
f) (2x³ + 3x² - x – 2) : ( 2x – 3)
g) ( x³ - 6x² + 7x + 4) : (x² - 2x – 1)
h) (3x³ - 13x + 37x – 50 ) : ( x² -2x + 5)
i) ( 10x³ - 31x² + 26x – 3) : ( 5x² - 8x + 1)
j) ( 4x⁴ - 14x³ + 15x² -17x + 5 ) : (x² - 3x + 1)
fonte : /jmpmat2.blogspot.com

Binômio de Newton

Binômio de Newton
Introdução
Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b².
Se quisermos calcular (a + b)³, podemos escrever:

(a + b)3 = a3 + 3a2b + 3ab2 + b3
Se quisermos calcular , podemos adotar o mesmo procedimento:
(a + b)4 = (a + b)3 (a+b) = (a3 + 3a2b + 3ab2 + b3) (a+b)
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o desenvolvimento da potência a partir da anterior, ou seja, de .
Porém quando o valor de n é grande, este processo gradativo de cálculo é muito trabalhoso.
Existe um método para desenvolver a enésima potência de um binômio, conhecido como binômio de Newton (Isaac Newton, matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de suas propriedades e o triângulo de Pascal.
Coeficientes Binomiais
Sendo n e p dois números naturais , chamamos de coeficiente binomial de classe p, do número n, o número , que indicamos por (lê-se: n sobre p). Podemos escrever:

O coeficiente binomial também é chamado de número binomial. Por analogia com as frações, dizemos que n é o seu numerador e p, o denominador. Podemos escrever:

É também imediato que, para qualquer n natural, temos:

Exemplos:
Propriedades dos coeficientes binomiais
1ª)
Se n, p, k e p + k = n então
Coeficientes binomiais como esses, que tem o mesmo numerador e a soma dos denominadores igual ao numerador, são chamados complementares.
Exemplos:

2ª)
Se n, p, k e p p-1 0 então
Essa igualdade é conhecida como relação de Stifel (Michael Stifel, matemático alemão, 1487 - 1567).
Exemplos:
Triângulo de Pascal
A disposição ordenada dos números binomiais, como na tabela ao lado, recebe o nome de Triângulo de Pascal
Nesta tabela triangular, os números binomiais com o mesmo numerador são escritos na mesma linha e os de mesmo denominador, na mesma coluna.
Por exemplo, os números binomiais , , e estão na linha 3 e os números binomiais , , , , ..., , ... estão na coluna 1.

Substituindo cada número binomial pelo seu respectivo valor, temos:
Construção do triângulo de Pascal
Para construir o triângulo do Pascal, basta lembrar as seguintes propriedades dos números binomiais, não sendo necessário calculá-los:
1ª) Como = 1, todos os elementos da coluna 0 são iguais a 1.
2ª) Como = 1, o último elemento de cada linha é igual a 1.
3ª) Cada elemento do triângulo que não seja da coluna 0 nem o último de cada linha é igual à soma daquele
que está na mesma coluna e linha anterior com o elemento que se situa à esquerda deste último (relação
de Stifel).
Observe os passos e aplicação da relação de Stifel para a construção do triângulo:
Propriedade do triângulo de Pascal
P1 Em Qualquer linha, dois números binomiais eqüidistantes dos extremos são iguais.
De fato, esses binomiais são complementares.
P2 Teorema das linhas: A soma dos elementos da enésima linha é .
De modo geral temos:

P3 Teorema das colunas: A soma dos elementos de qualquer coluna, do 1º elemento até um qualquer, é igual ao elemento situado na coluna à direita da considerada e na linha imediatamente abaixo.
1 + 2 + 3 + 4 + 5 + 6 = 21
1 + 4 + 10 + 20 = 35
P4 Teorema das diagonais: A soma dos elementos situados na mesma diagonal desde o elemento da 1ª coluna até o de uma qualquer é igual ao elemento imediatamente abaixo deste.
1 + 3 + 6 + 10 + 15 = 35
Fórmula do desenvolvimento do binômio de Newton
Como vimos, a potência da forma , em que a, , é chamada binômio de Newton. Além disso:
  • quando n = 0 temos
  • quando n = 1 temos
  • quando n = 2 temos
  • quando n = 3 temos
  • quando n = 4 temos
Observe que os coeficientes dos desenvolvimentos foram o triângulo de Pascal. Então, podemos escrever também:

De modo geral, quando o expoente é n, podemos escrever a fórmula do desenvolvimento do binômio de Newton:

Note que os expoentes de a vão diminuindo de unidade em unidade, variando de n até 0, e os expoentes de b vão aumentando de unidade em unidade, variando de 0 até n. O desenvolvimento de (a + b)n possui n + 1 termos.
Fórmula do termo geral do binômio
Observando os termos do desenvolvimento de (a + b)n, notamos que cada um deles é da forma .
  • Quando p = 0 temos o 1º termo:
  • Quando p = 1 temos o 2º termo:
  • Quando p = 2 temos o 3º termo:
  • Quando p = 3 temos o 4º termo:
  • Quando p = 4 temos o 5º termo:
    ..............................................................................
Percebemos, então, que um termo qualquer T de ordem p + 1pode ser expresso por:
www.somatematica.com.br