Pular para o conteúdo principal

Binômio de Newton

Binômio de Newton
Introdução
Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b².
Se quisermos calcular (a + b)³, podemos escrever:

(a + b)3 = a3 + 3a2b + 3ab2 + b3
Se quisermos calcular , podemos adotar o mesmo procedimento:
(a + b)4 = (a + b)3 (a+b) = (a3 + 3a2b + 3ab2 + b3) (a+b)
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o desenvolvimento da potência a partir da anterior, ou seja, de .
Porém quando o valor de n é grande, este processo gradativo de cálculo é muito trabalhoso.
Existe um método para desenvolver a enésima potência de um binômio, conhecido como binômio de Newton (Isaac Newton, matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de suas propriedades e o triângulo de Pascal.
Coeficientes Binomiais
Sendo n e p dois números naturais , chamamos de coeficiente binomial de classe p, do número n, o número , que indicamos por (lê-se: n sobre p). Podemos escrever:

O coeficiente binomial também é chamado de número binomial. Por analogia com as frações, dizemos que n é o seu numerador e p, o denominador. Podemos escrever:

É também imediato que, para qualquer n natural, temos:

Exemplos:
Propriedades dos coeficientes binomiais
1ª)
Se n, p, k e p + k = n então
Coeficientes binomiais como esses, que tem o mesmo numerador e a soma dos denominadores igual ao numerador, são chamados complementares.
Exemplos:

2ª)
Se n, p, k e p p-1 0 então
Essa igualdade é conhecida como relação de Stifel (Michael Stifel, matemático alemão, 1487 - 1567).
Exemplos:
Triângulo de Pascal
A disposição ordenada dos números binomiais, como na tabela ao lado, recebe o nome de Triângulo de Pascal
Nesta tabela triangular, os números binomiais com o mesmo numerador são escritos na mesma linha e os de mesmo denominador, na mesma coluna.
Por exemplo, os números binomiais , , e estão na linha 3 e os números binomiais , , , , ..., , ... estão na coluna 1.

Substituindo cada número binomial pelo seu respectivo valor, temos:
Construção do triângulo de Pascal
Para construir o triângulo do Pascal, basta lembrar as seguintes propriedades dos números binomiais, não sendo necessário calculá-los:
1ª) Como = 1, todos os elementos da coluna 0 são iguais a 1.
2ª) Como = 1, o último elemento de cada linha é igual a 1.
3ª) Cada elemento do triângulo que não seja da coluna 0 nem o último de cada linha é igual à soma daquele
que está na mesma coluna e linha anterior com o elemento que se situa à esquerda deste último (relação
de Stifel).
Observe os passos e aplicação da relação de Stifel para a construção do triângulo:
Propriedade do triângulo de Pascal
P1 Em Qualquer linha, dois números binomiais eqüidistantes dos extremos são iguais.
De fato, esses binomiais são complementares.
P2 Teorema das linhas: A soma dos elementos da enésima linha é .
De modo geral temos:

P3 Teorema das colunas: A soma dos elementos de qualquer coluna, do 1º elemento até um qualquer, é igual ao elemento situado na coluna à direita da considerada e na linha imediatamente abaixo.
1 + 2 + 3 + 4 + 5 + 6 = 21
1 + 4 + 10 + 20 = 35
P4 Teorema das diagonais: A soma dos elementos situados na mesma diagonal desde o elemento da 1ª coluna até o de uma qualquer é igual ao elemento imediatamente abaixo deste.
1 + 3 + 6 + 10 + 15 = 35
Fórmula do desenvolvimento do binômio de Newton
Como vimos, a potência da forma , em que a, , é chamada binômio de Newton. Além disso:
  • quando n = 0 temos
  • quando n = 1 temos
  • quando n = 2 temos
  • quando n = 3 temos
  • quando n = 4 temos
Observe que os coeficientes dos desenvolvimentos foram o triângulo de Pascal. Então, podemos escrever também:

De modo geral, quando o expoente é n, podemos escrever a fórmula do desenvolvimento do binômio de Newton:

Note que os expoentes de a vão diminuindo de unidade em unidade, variando de n até 0, e os expoentes de b vão aumentando de unidade em unidade, variando de 0 até n. O desenvolvimento de (a + b)n possui n + 1 termos.
Fórmula do termo geral do binômio
Observando os termos do desenvolvimento de (a + b)n, notamos que cada um deles é da forma .
  • Quando p = 0 temos o 1º termo:
  • Quando p = 1 temos o 2º termo:
  • Quando p = 2 temos o 3º termo:
  • Quando p = 3 temos o 4º termo:
  • Quando p = 4 temos o 5º termo:
    ..............................................................................
Percebemos, então, que um termo qualquer T de ordem p + 1pode ser expresso por:
www.somatematica.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de