Mostrando postagens com marcador Quimica. Mostrar todas as postagens
Mostrando postagens com marcador Quimica. Mostrar todas as postagens

segunda-feira, 20 de setembro de 2021

Sais


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com

        

Conceito de Arrhenius

Sais são compostos que provêm ou dos ácidos, pela substituição total ou parcial dos seus hidrogênios ionizáveis por cátions, ou das bases, pela substituição total ou parcial dos grupos OH- pelos ânions dos ácidos. Exemplos:

HI + NaOH → NaI + H2O

H2SO4 + 2NaOH → Na2SO4

Segundo os exemplos, os sais podem ser considerados como produtos de uma reação de neutralização. Será uma neutralização total quando no sal formado não restarem nem grupos OH- nem hidrogênios ácidos (H+). Caso contrário, será parcial.

Os sais provenientes de neutralização total são chamados de sais neutros (normais); os que apresentam grupos básicos (OH-) são chamados de sais básicos (hidroxissais), e os que apresentam hidrogênios ácidos são chamados de sais ácidos (hidrogenossais).

Dissociação de sais

Apesar de ser teoricamente impossível prever a solubilidade em água de sais, a prática exige esse conhecimento. Portanto, é bom saber que:

a) Todos os sais de metais alcalinos e de amônio (NH4+) são solúveis.

b) Todos os sais que contêm ânions NO3-, ClO3-, ClO4- e H3CCOO- são solúveis. São praticamente solúveis o AgC2H3O2, o KClO4 e o NH4ClO4.

c) Todos os sais que contêm ânions Cl-, Br- e o I- são solúveis, exceto os de Ag+, Pb2+ e Hg22+.

d) Todos os sais de SO42- são solúveis, exceto os de Pb2+, Sr2+ e Ba2+. Os sulfatos de Ca2+ e Ag+ são poucos solúveis.

e) Todos os sais que contêm ânions CO32-, PO43-, S2- e SO32- são insolúveis, exceto os de amônio (NH4+) e os de metais alcalinos.

Nomenclatura dos sais

Nome do ânion de nome do cátion.

Vejamos como isso se aplica aos diferentes tipos de sais.

Nomeando sais normais:

NaCl → cloreto de sódio
CaCl2 → cloreto de cálcio
Na2CO3 → carbonato de sódio
KNO2 → nitrito de potássio

O nome de um sal normal guarda correspondência com o nome do ácido que o origina:

Se o nome do ácido termina em ídrico, o do sal termina em eto.
Se a terminação do ácido é oso, a do sal será Ito.
Se a terminação do ácido é iço, a do sal será ato.

Temos, por exemplo, o sal NaCl, que é originado da reação:

HC + NaOH → NaCl + H2O

HC = ácido clorícrico
NaOH = hidróxido de sódio
NaCl = cloreto de sódio

Nomeando hidrogenossais e hidroxissais

O nome desses sais é formado pelo acréscimo dos prefixos numéricos gregos mono, di, tri, tetra, etc., de acordo com o número de hidrogênios ou de hidroxilas da fórmula.

Exemplo:

NaH2PO4 → diidrogenofosfato de sódio

Na2HPO4 → monoidrogenofosfato de sódio

Al(OH)2F → diidroxifluoreto de alumínio

Ca(OH)Cl → hidroxicloreto de cálcio

MgHCO3 → hidrogenocarbonato de magnésio

Nomeando sais hidratados

Indicamos o número de moléculas de água de hidratação com os prefixos numéricos gregos.

Exemplos:

CaCl2 . 2H2O → cloreto de cálcio diidratado

Na2SO4 . 10H2O → sulfato de sódio decaidratado

Nomeando sais mistos

Indicamos os nomes de todos os cátions e ânions da fórmula.

Exemplos:

NaCa(PO)4 → fosfato de sódio e cálcio

KAl(SO4)2 → sulfato de potássio e alumínio

Mg(NH4)(PO4) → fosfato de magnésio e amônio

quarta-feira, 15 de setembro de 2021

A tabela periódica

A tabela periódica atual
Em 1913 e 1914, o inglês Henry Moseley fez importantes descobertas trabalhando com uma técnica envolvendo raios X. Ele descobriu uma característica dos átomos que ficou conhecida como número atômico.
Nesse momento, basta dizer que cada elemento químico possui um número que lhe é característico, o número atômico. Quando os elementos químicos são organizados em ordem crescente de número atômico, ocorre uma periodicidade nas suas propriedades, ou seja, repetem-se regularmente elementos com propriedades semelhantes.
Essa regularidade da natureza é conhecida como lei periódica dos elementos.
Outros cientistas aprimoraram as descobertas de Mendeleev e de Moseley. Esses aprimoramentos conduziram à moderna tabela periódica dos elementos, que aparecem na tabela abaixo.
Nela, as linhas horizontais são chamadas de períodos e as colunas (verticais) são denominadas grupos, ou famílias.
A tabela é constituída de períodos e famílias
A simples localização de um elemento químico na tabela periódica já pode indicar diversas características específicas desse elemento.
Os períodos
Os elementos são distribuídos na tabela em ordem crescente da esquerda para a direita em linhas horizontais, de acordo com o número atômico (Z) de cada elemento, que fica acima de seu símbolo.
Observe a tabela acima. Na tabela há sete linhas horizontais, que são denominadas períodos.
Os períodos indicam o número de camadas ou níveis eletrônicos que o átomo possui. Por exemplo, o potássio (K) está localizado no quarto período, e o césio (Cs), no sexto. Isso significa que na distribuição eletrônica o potássio possui quatro camadas ou níveis eletrônicos e o césio possui seis.
O paládio (Pd) é uma exceção: apesar de estar na quinta linha horizontal, só possui quatro camadas ou níveis eletrônicos.
Os elementos de um mesmo período possuem o mesmo número de camadas eletrônicas, que por sua vez é coincidente com o número do período. Por exemplo:
Período Nº de camadas Camadas
1
1
K






2
2
K
L





3
3
K
L
M




4
4
K
L
M
N



5
5
K
L
M
N
O


6
6
K
L
M
N
O
P

7
7
K
L
M
N
O
P
Q
As famílias
Observe que na tabela periódica existem 18 linhas verticais ou colunas. Elas representam as famílias ou os grupos de elementos químicos.
Acima das colunas existem números (1, 2, 3 etc.).
Cada coluna representa uma família; por exemplo:
  • 1 é a família dos metais alcalinos;
  • 2 é a família doa alcalinos terrosos;
  • 18 é a família dos gases nobres.
Cada família química agrupa seus elementos de acordo com a semelhança nas propriedades. Por exemplo, a família 11 é composta pelos elementos químicos cobre (Cu), prata (Ag) e ouro (Au). Eles fazem parte do grupo dos metais e apresentam características comuns: brilho metálico, maleabilidade, ductibilidade, são bons condutores de calor e de eletricidade.
Assim com esses outros elementos, de uma mesma família possuem semelhanças em suas propriedades.
O número de algumas famílias indica quantos elétrons o elemento químico possui na última camada de sua elétrosfera. Acompanhe a seguir, alguns exemplos.
  • O sódio (Na) está na família 1, isto é, possui um elétron na última camada de sua eletrosfera.
  • O magnésio (MG) está na família 2, isto é, possui um elétron na última camada de sua elétrosfera.
  • O alumínio (Al) encontra-se na família 3, pois esse elemento possui três elétrons na última camada de sua elétrosfera.
Família
Nº de elétrons na última camada
1
1
2
2
13
3
14
4
15
5
16
6
17
7
18
8

Os elementos químicos situados nas famílias 1 e 2 possuem o número de elétrons na última camada igual ao número da família a qual pertencem.
Para os das famílias 13 até 18, obtêm-se o número de elétrons na última camada, subtraindo-se 10 do número da família. Nas demais famílias essa regra não pode ser aplicada.
O hélio, apesar de estar na família 18, apresenta apenas dois elétrons na última camada, pois esse elemento possui apenas dois elétrons.

Metais, não-metais e semimetais
Na tabela periódica da pagina anterior, os elementos destacados em amarelo formam substâncias simples com algumas propriedades razoavelmente semelhantes. Essas substancias, de modo geral, conduzem bem a corrente elétrica e o calor, são facilmente transformadas em lâminas e em fios e são sólidas nas condições ambientes (isto é, 25ºC de temperatura e pressão equivalente ao valor médio da pressão atmosférica ao nível do mar), exceção feita àquela substância formada pelo mercúrio (Hg), que é líquida. Esses elementos são denominados metais.
Os elementos destacados em rosa e em azul formam substâncias simples que, ao contrário, não conduzem bem o calor nem a corrente elétrica (exceto o carbono na forma da substância simples o grafite), não são facilmente transformadas em lâminas ou em fios. Tais elementos são denominados não-metais (alguns os chamam de ametais). Dos não-metais, onze foram substâncias simples gasosas nas condições ambientes (hidrogênio, nitrogênio, oxigênio, flúor, cloro e gases nobres) uma forma substância líquida (bromo) e os demais formam substâncias simples sólidas.
Os elementos dos quadrinhos amarelos são os semimetais, assim denominados porque apresentam propriedades “intermediárias” entre a dos metais e a dos não-metais. Eles formam substâncias simples sólidas nas condições ambientes. Dois semimetais de muita importância prática são o silício e o germânio, empregados em componentes eletrônicos.
Gases nobres: modelo de estabilidade
Todas as substâncias químicas são formadas por átomos de elementos químicos. Os cientistas observaram que a imensa maioria das substâncias conhecidas é formada por átomos combinados, unidos. Ás vezes são átomos de um mesmo elemento, às vezes de elementos diferentes.
Dos milhões de substâncias conhecidas, sabe-se de apenas seis nas quais existem átomos não combinados. Essas substâncias são o hélio, o neônio, o xenônio, o argônio, o criptônio e o radônio, gases presentes em pequena quantidade na atmosfera terrestre. Esses gases são formados por átomos não combinados dos elementos do grupo 18 da tabela periódica (He, NE, Ar, Kr, Xe, RN), chamado grupo dos gases nobres.
Além disso, até hoje não foi descoberta sequer uma substância natural na qual átomos de gases nobres estejam combinados entre si ou com átomos de outros elementos.
Essas observações forneceram pistas aos cientistas, no final do século XIX e no início do século XX, para começarem a esclarecer como os átomos se combinam. Já que a eletrosfera é a parte mais externa dos átomos e o núcleo é muito pequeno, parece razoável ser a eletrosfera que atua na combinação dos átomos. E já que os gases nobres não tendem a se combinar, tudo indica que possuir uma eletrosfera semelhante à de gás nobre permite a um átomo estabilizar-se.
www.sobiologia.com.br

quinta-feira, 9 de setembro de 2021

Propriedades Funcionais de Ácidos e Bases

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com


Objetivo: Constatar experimentalmente as propriedades funcionais dos ácidos e bases. Utilizar corretamente os indicadores ácido - base mais comuns.

Introdução Teórica:

Propriedades Funcionais dos Ácidos

1) Possuem sabor azedo (sabor ácido)

2) Mantêm incolor uma solução de Fenolftaleína

3) Descoram uma solução básica corada por Fenolftaleína

4) Colorem de vermelho uma solução de metilorange (também chamado de alaranjado de metila.)

5) Tornam amarelo o azul de bromotimol

6) Tornam vermelho o papel de tornassol azul e também o indicador universal

7) Não alteram a cor do papel de tornassol vermelho

8) Ao reagirem com bases, sempre se formam sal e água


Propriedades Funcionais das Bases

1) Colorem uma solução de Fenolftaleína

2) Mantém alaranjada uma solução de Metilorange

3) Mantém azul o azul de bromotimol

4) Tornam azul o papel de tornassol e vermelho e também o papel de indicador universal

5) Mantém azul o papel de tornassol azul

6) Ao reagirem com ácidos, sempre há a formação de sal e água.

A reação entre ácido e base é chamada de “reação de neutralização” ou de “reação de salificação”.

Ácido + Base ⇒ Sal + H2O

HR + MOH ⇒ MR + HOH

onde R é o ânion do ácido e M é o cátion da base.


Indicadores Ácido - Base

Indicadores Ácido - base são substâncias cujas cores podem sofrer determinadas alterações quando colocadas em meio ácido ou em meio alcalino (“básico”). Os indicadores ácido base mais importantes são: Fenolftaleína, Metilorange, Azul de Bromotimol, Papel de tornassol azul, Papel de tornassol vermelho e Papel indicador universal.

quarta-feira, 22 de julho de 2020

Óxidos

Os óxidos são compostos binários, isto é, são substâncias formadas pela combinação de dois elementos, um deles é o oxigênio (que é o mais eletronegativo entre eles). Os óxidos se classificam em função do seu comportamento na presença de outros elementos como: água, bases e ácidos, sendo assim eles podem ser: básicos, ácidos, neutros, anfóteros, mistos, ou peróxidos, vejamos a diferença entre eles:

Óxidos básicos: o metal presente em sua fórmula, geralmente apresenta “carga elétrica” +1 e +2, ou seja, possuem caráter iônico.

Óxidos ácidos: no geral são formados por ametais e, apresentam caráter covalente.

Óxidos neutros: eles não reagem com água, ácido ou base, são covalentes, ou seja, sua composição é de ametais.

Óxidos anfóteros: pode se apresentar de dois modos. Em presença de um ácido se comportam como óxidos básicos, e na presença de uma base como óxidos ácidos.

Óxidos duplos ou mistos: quando dois elementos se unem e formam um óxido, esse vai ser denominado óxido misto.

Peróxidos: possuem em sua fórmula o grupo (O2) 2-.
Nos compostos CO2, SO2, Na2O, Fe2O3 e ZnO, entre outros, notamos a presença do elemento oxigênio ligado a mais um elemento. Tal característica permite reunir essas substâncias na categoria dos óxidos.

Óxidos são compostos binários em que o oxigênio é o elemento mais eletronegativo.

Fórmula geral:

Ey+O2- → E2Oy

O composto OF2, por exemplo, seria um óxido?

Como o flúor é o único elemento mais eletronegativo que o oxigênio, concluímos que o composto OF2 não é óxido de flúor, mas sim o fluoreto de oxigênio.

Em um óxido, a ligação entre o oxigênio e outro elemento pode ser iônica ou covalente.
- Óxidos iônicos são compostos nos quais o oxigênio está ligado a um metal de baixa eletronegatividade, isto é, alcalinos e alcalinoterrosos, que fornecem elétrons para o oxigênio.

Exemplos: Li2O e MgO

- Óxidos moleculares, ou covalentes, são compostos nos quais o oxigênio está ligado a um elemento de grande eletronegatividade.

Exemplos: CO2 , SO2 e NO.

Nomenclatura dos Óxidos

Nomeamos os óxidos de acordo com os grupos de divisão:

Óxidos moleculares: “óxido de elemento“; antes da palavra óxido e do nome do elemento, colocamos os prefixos mono, di, tri, tetra, penta, etc. para indicar a quantidade de átomos de oxigênio e do elemento existentes na fórmula:

Exemplos:

CO2: dióxido de carbono

N2O5: pentóxido de dinitrogênio

Cl2O7: heptóxido de dicloro

O uso do prefixo mono é facultativo:

CO: monóxido de carbono ou óxido de carbono.

Óxidos iônicos: escrevemos a palavra óxido seguida da preposição de e do nome do elemento associado ao oxigênio.

Exemplos:

Na2O: óxido de sódio

CaO: óxido de cálcio

Caso o elemento, metal, forme dois cátions diferentes, a distinção é feita da mesma forma que para as bases e para os sais:

Exemplos:

FeO: óxido de ferro II ou óxido ferroso

Fe2O3: óxido de ferro III ou óxido férrico

Classificação dos Óxidos

Podemos classificar os óxidos em:
Básicos: reagem com água, formando uma base, e reagem com ácidos, formando sal e água. Para formar uma base, é necessário um cátion, portanto estes óxidos são todos iônicos. Exemplos:

K2O + H2O → 2KOH

K2O + 2HCl → 2KCl + H2O

Ácidos: reagem com água, formando ácido, e reagem com base, formando sal e água; estes óxidos são todos moleculares. Exemplos:

SO3 + H2O → H2SO4

SO3 + 2NaOH → Na2SO4 + H2O

Podemos considerar os óxidos ácidos como ácidos que perderam água; por isso eles são também chamados de anidridos (sem água):

Anfóteros: reagem tanto com ácido como com base. Exemplos:

Pb, ZnO, Al2O3 …

ZnO + H2SO4 → ZnSO4 + H2O

ZnO + 2NaOH → Na2ZnO2
Neutros ou Indiferentes: não reagem com água, nem com ácido, nem com base. São os óxidos:

CO , NO e N2O
www.infoescola.com

Compostos orgânicos: características gerais

Líria Alves




A cetona é um composto orgânico
Os compostos orgânicos em sua maioria são formados pela ligação entre átomos de carbono e hidrogênio. Sendo assim, a atração entre elétrons das moléculas orgânicas é praticamente a mesma, essa propriedade nos leva a abordar uma característica dos compostos orgânicos: a polaridade.

Polaridade

Todas as ligações dos compostos orgânicos formadas somente por carbono e hidrogênio são apolares, pois os átomos unidos demonstram uma pequena desigualdade de eletronegatividade. Quando na molécula de um composto orgânico houver outro elemento químico, além de carbono e hidrogênio, suas moléculas passarão a apresentar certa polaridade.



Solubilidade

Compostos orgânicos são praticamente insolúveis em água, mas por outro lado, tendem a se dissolver em outros compostos orgânicos, sejam eles polares ou apolares. Toda regra tem exceção e alguns compostos orgânicos que são polares podem se dissolver na água, como o ácido acético, açúcar, álcool comum, acetona, etc.

Combustibilidade

A maioria dos compostos que são bons combustíveis, ou seja, se queimam com facilidade, são de origem orgânica.
Exemplos: gás utilizado em fogões, álcool dos automóveis.

Temperatura de fusão e de ebulição

Em geral as temperaturas de fusão e de ebulição dos compostos orgânicos são baixas. A baixa solubilidade dos compostos orgânicos apolares é responsável por pontos de fusão e ebulição menores comparados aos dos compostos inorgânicos, ou seja, as interações intermoleculares são mais fracas.

Outros fatores que influenciam a temperatura de ebulição e fusão de uma substância são o tamanho e a geometria da molécula. A geometria de uma molécula interfere em sua força intermolecular, quanto mais forte a ligação, mais elevado se tornará o ponto de ebulição. O tamanho também julga, quanto maior um composto, maior sua massa molecular e conseqüentemente, maior será seu ponto de ebulição.

Aldeídos

Aldeídos

Líria Alves




Metanal - Mais conhecido como formol
Os aldeídos são denominados de compostos carbonílicos porque apresentam o grupo carbonila C = O. Essa classe de compostos pode ser encontrada na natureza na forma de flores e frutos.

Conheça os principais aldeídos:

Metanal: solução usada para conservar cadáveres humanos e animais para estudos científicos. Este composto é mais conhecido como formol ou formaldeído, e é usado na fabricação de desinfetantes (antissépticos) e na indústria de plásticos e resinas.

Aldeídos estão presentes em tratamentos capilares, desta forma ficou mais conhecido como formol.

Etanal (C2H4O): composto usado como matéria-prima na indústria de pesticidas e medicamentos, é também conhecido como aldeído acético.

terça-feira, 21 de julho de 2020

Distribuição Eletrônica de Elétrons


Os elétrons estão distribuídos em camadas ao redor do núcleo. Admite-se a existência de 7 camadas eletrônicas, designados pelas letras maiúsculas:

K,L,M,N,O,P e Q. À medida que as camadas se afastam do núcleo, aumenta a energia dos elétrons nelas localizados.

As camadas da eletrosfera representam os níveis de energia da eletrosfera. Assim, as camadas K,L,M,N,O, P e Q constituem os 1º, 2º, 3º, 4º, 5º, 6º e 7º níveis de energia, respectivamente.

Por meio de métodos experimentais, os químicos concluíram que o número máximo de elétrons que cabe em cada camada ou nível de energia é:
Nível de energia Camada Número máximo de elétrons
K 2
L 8
M 18
N 32
O 32
P 18
Q 2 (alguns autores admitem até 8)
Em cada camada ou nível de energia, os elétrons se distribuem em subcamadas ou subníveis de energia, representados pelas letras s,p,d,f, em ordem crescente de energia.

O número máximo de elétrons que cabe em cada subcamada, ou subnivel de energia, também foi determinado experimentalmente:
energia crescente
---------------------------------->
Subnível s p d f
Número máximo de elétrons 2 6 10 14
O número de subníveis que constituem cada nível de energia depende do número máximo de elétrons que cabe em cada nível. Assim, como no 1ºnível cabem no máximo 2 elétrons, esse nível apresenta apenas um subnível s, no qual cabem os 2 elétrons. O subnível s do 1º nível de energia é representado por 1s.

Como no 2º nível cabem no máximo 8 elétrons, o 2º nível é constituído de um subnível s, no qual cabem no máximo 2 elétrons, e um subnível p, no qual cabem no máximo 6 elétrons. Desse modo, o 2º nível é formado de dois subníveis, representados por 2s e 2p, e assim por diante.
Resumindo:
Nível Camada Nº máximo de elétrons Subníveis conhecidos
K 2 1s
L 8 2s e 2p
M 18 3s, 3p e 3d
N 32 4s, 4p, 4d e 4f
O 32 5s, 5p, 5d e 5f
P 18 6s, 6p e 6d
Q 2 (alguns autores admitem até 8) 7s 7p
Linus Carl Pauling (1901-1994), químico americano, elaborou um dispositivo prático que permite colocar todos os subníveis de energia conhecidos em ordem crescente de energia. É o processo das diagonais, denominado diagrama de Pauling, representado a seguir. A ordem crescente de energia dos subníveis é a ordem na seqüência das diagonais.


Acompanhe os exemplos de distribuição eletrônica:

1 - Distribuir os elétrons do átomo normal de manganês (Z=25) em ordem de camada.

Solução:

Se Z=25 isto significa que no átomo normal de manganês há 25 elétrons. Aplicando o diagrama de Pauling, teremos:

K - 1s2
L - 2s2 2p6
M - 3s2 3p6 3d5
N - 4s2
4p 4d 4f
O - 5s 5p 5d 5f
P - 6s 6p 6d
Q - 7s 7p

Resposta: K=2; L=8; M=13; N=2

2 - Distribuir os elétrons do átomo normal de xenônio (Z=54) em ordem de camada.

Solução:

K - 1s2
L - 2s2 2p6
M- 3s2 3p6 3d10
N- 4s2 4p6 4d10
4f
O- 5s2 5p6 5d 5f
P- 6s 6p 6d
Q- 7s 7p

Resposta: K=2; L=8; M=18; N=18; O=8

Há alguns elementos químicos cuja distribuição eletrônica não “bate” com o diagrama de Pauling.
www.brasilescola.com

Hidrocarbonetos

www.youtube.com/accbarroso1
Hidrocarbonetos são compostos formados exclusivamente de carbono e hidrogênio, que também são chamados hidrocarburetos, carboidretos, carbetos, carburetos ou carbonetos de hidrogênio.

Os fogos sagrados de Baku, capital do Azerbaijão, situada à beira do mar Cáspio, assombraram seus antigos habitantes, que ignoravam a origem do fenômeno. Modernamente sabe-se que se devem à constante combustão dos vapores de metano e outros hidrocarbonetos.

Classificação e ocorrência

Os hidrocarbonetos se classificam de acordo com a proporção dos átomos de carbono e hidrogênio presentes em sua composição química. Assim, denominam-se hidrocarbonetos saturados os compostos ricos em hidrogênio, enquanto os hidrocarbonetos ditos insaturados apresentam uma razão hidrogênio/carbono inferior e são encontrados principalmente no petróleo e em resinas vegetais.

Os grupos de hidrocarbonetos constituem as chamadas séries homólogas, em que cada termo (composto orgânico) difere do anterior em um átomo de carbono e dois de hidrogênio. Os termos superiores da série homóloga saturada, de peso molecular mais alto, encontram-se em alguns tipos de petróleo e como elementos constituintes do pinho, da casca de algumas frutas e dos pigmentos das folhas e hortaliças.

Os hidrocarbonetos etilênicos, primeiro subgrupo dos insaturados, estão presentes em muitas modalidades de petróleo em estado natural, enquanto os acetilênicos, que compõem o segundo subgrupo dos hidrocarbonetos insaturados, obtêm-se artificialmente pelo processo de craqueamento (ruptura) catalítico do petróleo. Os hidrocarbonetos aromáticos foram assim chamados por terem sido obtidos inicialmente a partir de produtos naturais como resinas ou bálsamos, e apresentarem odor característico. Com o tempo, outras fontes desses compostos foram descobertas. Até a segunda guerra mundial, por exemplo, sua fonte mais importante era o carvão. Com o crescimento da demanda, durante e após a guerra, outras fontes foram pesquisadas. Atualmente, grande parte dos compostos aromáticos, base de inúmeros processos industriais, se obtém a partir do petróleo.

Estrutura e nomenclatura

A estrutura das moléculas dos hidrocarbonetos baseia-se na tetravalência do carbono, isto é, em sua capacidade de ligar-se, quimicamente, a quatro outros átomos, inclusive de carbono, simultaneamente. Assim, as sucessões de átomos de carbono podem formar cadeias lineares, ramificadas em ziguezague, que lembram anéis e estruturas de três dimensões.

Hidrocarbonetos saturados

A fórmula empírica molecular dos hidrocarbonetos saturados, também chamados alcanos ou parafinas, é CnH2n+2, segundo a qual n átomos de carbono combinam-se com 2n + 2 átomos de hidrogênio para formarem uma molécula. Valores inteiros sucessivos de n dão origem aos termos distintos da série: metano (CH4), etano (C2H6), propano (C3H8), butano (C4H10) etc.

A partir do quarto termo da série, o butano, os quatro carbonos podem formar uma cadeia linear ou uma estrutura ramificada. No primeiro caso, o composto se denomina n-butano. Na estrutura ramificada, um átomo de carbono se liga ao carbono central da cadeia linear formada pelos outros três, formando o iso-butano, ou pode dar origem a uma estrutura cíclica, própria do composto chamado ciclobutano, em que os átomos de carbono das extremidades estão ligados entre si. A existência de compostos com mesma fórmula molecular, mas com estruturas diferentes, é fenômeno comum nos hidrocarbonetos, designado como isomeria estrutural. As substâncias isômeras possuem propriedades físicas e químicas semelhantes, mas não idênticas, e formam, em certos casos, moléculas completamente diferentes.

Os termos da série saturada são nomeados a partir do butano com o prefixo grego correspondente ao número de átomos de carbono constituintes da molécula: penta, hexa, hepta etc., acrescidos da terminação "ano". Nos cicloalcanos, hidrocarbonetos de cadeia saturada com estrutura em anel, a nomenclatura faz-se com a anteposição da palavra "ciclo" ao nome correspondente ao hidrocarboneto análogo na cadeia linear. Finalmente, os possíveis isômeros presentes na série saturada cíclica se distinguem por meio de números, associados à posição da ramificação no ciclo.

Hidrocarbonetos insaturados

O primeiro grupo de hidrocarbonetos insaturados, constituído pelos compostos etilênicos, também chamados alcenos, alquenos ou olefinas, tem como característica estrutural a presença de uma dupla ligação entre dois átomos de carbono. Sua fórmula molecular é CnH2n e os primeiros termos da série homóloga correspondente recebem o nome de etileno ou eteno (C2H4), propileno ou propeno (C3H6), butileno ou buteno (C4H8) etc. Os termos seguintes têm uma nomenclatura análoga à dos hidrocarbonetos saturados, acrescidos da terminação "eno".

A posição da dupla ligação na molécula dos alcenos pode dar origem a diferentes isômeros. Para distingui-los, o número do primeiro carbono a conter essa ligação precede o nome do hidrocarboneto na nomenclatura desses compostos. Existem, ainda, hidrocarbonetos etilênicos com mais de uma dupla ligação -- denominados dienos, quando possuem duas ligações, e polienos, com três ou mais. O grupo mais importante dessa classe de hidrocarbonetos constitui-se de compostos com duplas ligações em posições alternadas, os dienos conjugados. A nomenclatura dos alcenos de estrutura anelar, ditos cicloalquenos, é formalmente análoga à dos cicloalcanos.

Os alcinos ou alquinos (de fórmula molecular CnH2n-2), também conhecidos como hidrocarbonetos acetilênicos e componentes do segundo grupo dos compostos insaturados, apresentam ligação tripla em sua estrutura e sua nomenclatura é similar à dos alcenos, com a terminação "ino" que lhes é própria. Os cicloalquinos inferiores (de baixo peso molecular) são instáveis, sendo o ciclo-octino, com oito átomos de carbono, o menor alcino cíclico estável conhecido.

Hidrocarbonetos aromáticos

A estrutura do benzeno, base dos hidrocarbonetos aromáticos, foi descrita pela primeira vez por Friedrich August Kekulé, em 1865. Segundo ele, a molécula do benzeno tem o formato de um hexágono regular com os vértices ocupados por átomos de carbono ligados a um átomo de hidrogênio. Para satisfazer a tetravalência do carbono, o anel benzênico apresenta três duplas ligações alternadas e conjugadas entre si, o que lhe confere sua estabilidade característica.

Os hidrocarbonetos da série homóloga benzênica subdividem-se em três grupos distintos. O primeiro constitui-se de compostos formados pela substituição de um ou mais átomos de hidrogênio do anel pelos radicais de hidrocarbonetos. Esses compostos têm seus nomes derivados do radical substituinte, terminado em "il", e seguidos da palavra "benzeno". Alguns, no entanto, apresentam denominações alternativas (ou vulgares), mais comumente empregadas. Assim, o metil-benzeno é conhecido como tolueno, o dimetil-benzeno como xileno etc.

No segundo grupo, encontram-se os compostos formados pela união de anéis benzênicos por ligação simples entre os átomos de carbono, como a bifenila, ou com um ou mais átomos de carbono entre os anéis. Por último, o terceiro grupo de hidrocarbonetos aromáticos constitui-se de compostos formados por condensação de anéis benzênicos, de modo que dois ou mais átomos de carbono sejam comuns a mais de um anel, tais como o naftaleno, com dois anéis, e o antraceno, com três.

Propriedades e aplicações

Os hidrocarbonetos em geral são insolúveis em água, mas se solubilizam prontamente em substâncias orgânicas como o éter e a acetona. Os primeiros termos das séries homólogas são gasosos, enquanto os compostos de maior peso molecular são líquidos ou sólidos. Graças a sua capacidade de decompor-se em dióxido de carbono e vapor d'água, em presença de oxigênio, com desprendimento de grande quantidade de energia, torna-se possível a utilização de vários hidrocarbonetos como combustíveis.

Os hidrocarbonetos saturados, ou parafinas, caracterizam-se sobretudo por ser quimicamente inertes. Industrialmente, são empregados no processo de craqueamento (cracking) ou ruptura, a elevadas temperaturas, e produzem misturas de compostos de estruturas mais simples, saturados ou não. A hidrogenação catalítica dos alcenos é utilizada, em escala industrial, para a produção controlada de moléculas saturadas. Esses compostos são usados ainda como moderadores nucleares e como combustíveis (gás de cozinha, em automóveis etc.).

Os hidrocarbonetos insaturados com duplas ligações têm a capacidade de realizar reações de adição com compostos halogenados e formam importantes derivados orgânicos. Além disso, com a adição de moléculas de alcenos, é possível efetuar a síntese dos polímeros, empregados industrialmente no fabrico de plásticos (polietileno, teflon, poliestireno etc) e de fibras sintéticas para tecidos (orlon, acrilan etc.). Além disso, faz parte da gasolina uma importante mistura de alquenos. Metade da produção de acetileno é utilizada, como oxiacetileno, na soldagem e corte de metais. Os hidrocarbonetos aromáticos, além de bons solventes, são empregados na produção de resinas, corantes, inseticidas, plastificantes e medicamentos.

©Encyclopaedia Britannica do Brasil Publicações Ltda

Autoria: Daniel Salomão Carvalho

terça-feira, 14 de julho de 2020

Modelo Atômico Atual: Distribuição Eletrônica

Modelo Atômico Atual: Distribuição Eletrônica

A distribuição eletronica nos descreve o arranjo dos elétrons em um átomo, fornecendo o número de elétrons em cada nível principal e subnível. Os elétrons preenchem os subníveis em ordem crescente de energia. Um subnível deve estar totalmente preenchido para depois iniciarmos o preenchimento do subnível seguinte.
O cientista Linus Pauling formulou um diagrama que possibilita distribuir os elétrons em ordem crescente de energia dos níveis e subníveis.

Diagrama de Linus Pauling




Diagrama de Linus Pauling
O sentido das flechas indica os subníveis e níveis em ordem crescente de energia.


1. Distribuição Eletrônica em átomos neutros

Para fazermos a distribuição eletrônica de um átomo neutro, devemos conhecer o seu número atômico (Z) e, conseqüentemente, seu número de elétrons e distribuí-los em ordem crescente de energia dos subníveis, segundo o diagrama de Pauling.
Distribuição Eletrônica

A distribuição eletrônica pode ser representada em ordem crescente de energia ou por camadas. Por exemplo:
Distribuição Eletrônica

2. Distribuição Eletrônica em Íons

A distribuição eletronica de íons é semelhante à dos átomos neutros. Lembrando que um íon é formado a partir da perda ou ganho de elétrons que ocorre com um átomo e que os elétrons serão retirados ou recebidos sempre da última camada eletrônica (mais externa), chamada camada de valência, e não do subnível mais energético, teremos, por exemplo, as seguintes distribuições:
Distribuição Eletrônica

Para a distribuição do íon Fe3+, é necessária a retirada de um elétron do subnível d.
Distribuição Eletrônica
www.vestibulandoweb.com.br

Ácidos


Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
www.youtube.com/accbarroso1



ÁCIDOS


Ácido de Arrhenius - Substância que, em solução aquosa, libera como cátions somente íons H+ (ou H3O+).
Nomenclatura

Ácido não-oxigenado (HxE):

ácido + [nome de E] + ídrico

Exemplo: HCl - ácido clorídrico

Ácidos HxEOy, nos quais varia o nox de E:

Grupo de E Nox de E Nome do ácido HxEOy Exemplo
7 7 ácido per + [nome de E] + ico HClO4 ácido perclórico
Nox do Cl = +7
a < 7 ácido [nome de E] + ico HClO3 ácido clórico
Nox do Cl = +5
b < a ácido [nome de E] + oso HClO2 ácido cloroso
Nox do Cl = +3
c < b ácido hipo + [nome de E] + oso HClO ácido hipocloroso
Nox do Cl = +1
G ¹ 7 G ácido [nome de E] + ico H3PO4 ácido fosfórico
Nox do P = +5
a < G ácido [nome de E] + oso H3PO3 ácido fosforoso
Nox do P = +3
b < a ácido hipo + [nome de E] + oso H3PO2 ácido hipofosforoso
Nox do P = +1

Ácidos orto, meta e piro. O elemento E tem o mesmo nox. Esses ácidos diferem no grau de hidratação:

1 ORTO - 1 H2O = 1 META
2 ORTO - 1 H2O = 1 PIRO

Nome dos ânions sem H ionizáveis - Substituem as terminações ídrico, oso e ico dos ácidos por eto, ito e ato, respectivamente.

Classificação

Quanto ao número de H ionizáveis:

* monoácidos ou ácidos monopróticos
* diácidos ou ácidos dipróticos
* triácidos ou ácidos tripróticos
* tetrácidos ou ácidos tetrapróticos

Quanto à força

* Ácidos fortes, quando a ionização ocorre em grande extensão.
Exemplos: HCl, HBr, HI . Ácidos HxEOy, nos quais (y - x) ³ 2, como HClO4, HNO3 e H2SO4.
* Ácidos fracos, quando a ionização ocorre em pequena extensão.
Exemplos: H2S e ácidos HxEOy, nos quais (y - x) = 0, como HClO, H3BO3.
* Ácidos semifortes, quando a ionização ocorre em extensão intermediária.
Exemplos: HF e ácidos HxEOy, nos quais (y - x) = 1, como H3PO4, HNO2, H2SO3.
Exceção: H2CO3 é fraco, embora (y - x) = 1.

Roteiro para escrever a fórmula estrutural de um ácido HxEOy

1. Ligue a E tantos -O-H quantos forem os H ionizáveis.
2. Ligue a E os H não-ionizáveis, se houver.
3. Ligue a E os O restantes, por ligação dupla (E = O) ou dativa (E ® O).

Ácidos mais comuns na química do cotidiano

* Ácido clorídrico (HCl)
o O ácido impuro (técnico) é vendido no comércio com o nome de ácido muriático.
o É encontrado no suco gástrico .
o É um reagente muito usado na indústria e no laboratório.
o É usado na limpeza de edifícios após a sua caiação, para remover os respingos de cal.
o É usado na limpeza de superfícies metálicas antes da soldagem dos respectivos metais.
* Ácido sulfúrico (H2SO4)
o É o ácido mais importante na indústria e no laboratório. O poder econômico de um país pode ser avaliado pela quantidade de ácido sulfúrico que ele fabrica e consome.
o O maior consumo de ácido sulfúrico é na fabricação de fertilizantes, como os superfosfatos e o sulfato de amônio.
o É o ácido dos acumuladores de chumbo (baterias) usados nos automóveis.
o É consumido em enormes quantidades em inúmeros processos industriais, como processos da indústria petroquímica, fabricação de papel, corantes, etc.
o O ácido sulfúrico concentrado é um dos desidratantes mais enérgicos. Assim, ele carboniza os hidratos de carbono como os açúcares, amido e celulose; a carbonização é devido à desidratação desses materiais.
o O ácido sulfúrico "destrói" o papel, o tecido de algodão, a madeira, o açúcar e outros materiais devido à sua enérgica ação desidratante.
o O ácido sulfúrico concentrado tem ação corrosiva sobre os tecidos dos organismos vivos também devido à sua ação desidratante. Produz sérias queimaduras na pele. Por isso, é necessário extremo cuidado ao manusear esse ácido.
o As chuvas ácidas em ambiente poluídos com dióxido de enxofre contêm H2SO4 e causam grande impacto ambiental.
* Ácido nítrico (HNO3)
o Depois do sulfúrico, é o ácido mais fabricado e mais consumido na indústria. Seu maior consumo é na fabricação de explosivos, como nitroglicerina (dinamite), trinitrotolueno (TNT), trinitrocelulose (algodão pólvora) e ácido pícrico e picrato de amônio.
o É usado na fabricação do salitre (NaNO3, KNO3) e da pólvora negra (salitre + carvão + enxofre).
o As chuvas ácidas em ambientes poluídos com óxidos do nitrogênio contém HNO3 e causam sério impacto ambiental. Em ambientes não poluídos, mas na presença de raios e relâmpagos, a chuva também contém HNO3, mas em proporção mínima.
o O ácido nítrico concentrado é um líquido muito volátil; seus vapores são muito tóxicos. É um ácido muito corrosivo e, assim como o ácido sulfúrico, é necessário muito cuidado para manuseá- lo.
* Ácido fosfórico (H3PO4)
o Os seus sais (fosfatos) têm grande aplicação como fertilizantes na agricultura.
o É usado como aditivo em alguns refrigerantes.
* Ácido acético (CH3 - COOH)
o É o ácido de vinagre, produto indispensável na cozinha (preparo de saladas e maioneses).
* Ácido fluorídrico (HF)
o Tem a particularidade de corroer o vidro, devendo ser guardado em frascos de polietileno. É usado para gravar sobre vidro.
* Ácido carbônico (H2CO3)
o É o ácido das águas minerais gaseificadas e dos refrigerantes. Forma-se na reação do gás carbônico com a água:
CO2 + H2O ® H2CO3

Ácidos

Segundo Arrhenius, ácidos são substâncias que, quando em solução aquosa, se dissociam, originando exclusivamente H+ como íons positivos. Na realidade, o H+ se associa a uma molécula de água, formando o H3O+.

HCl + H2O = Cl1- + H301+

H2SO4 + 2 H2O = SO42- + 2 H3O1+

Classificações dos ácidos

- presença ou não de oxigênio

Oxiácidos: presença de oxigênio na molécula.

Exemplos: H2SO4 , HNO3

Hidrácidos: oxigênio não presente na molécula.

Exemplos: HCl, HCN

- número de hidrogênios ionizáveis

Monoácidos: presença de 1 H ionizável.

HCl = H+ + Cl-

Diácidos: presença de 2 H ionizáveis.

H2SO4 = 2 H+ + SO42-

Triácidos: presença de 3 H ionizáveis.

H3PO4 = 3 H+ + PO43-

- volatilidade

Voláteis: são gasosos ou líquidos e com baixo ponto de ebulição: HNO3 , HCl e H2S

Fixos: muito pouco voláteis, somente H2SO4 e H3PO4

- grau de ionização

Representado pela letra grega alfa, o grau de ionização é a relação entre a quantidade de moléculas dissociadas e o total de moléculas dissolvidas. Quanto maior o valor de alfa, mais alta a tendência do ácido a se dissociar.

alfa (%) = (nº moléculas ionizadas / nº moléculas dissolvidas) x 100

ácidos fortes (alfa maior que 50%): HI, HBr, HCl, HNO3, H2SO4.

ácidos médios (alfa entre 5 e 50%): H2SO3, H3PO4, HF.

ácidos fracos (alfa menor que 5%): H2S, H3BO3, HCN. ácidos orgânicos.

Formulação dos ácidos

Juntam-se tantos H+ quantos forem necessários para neutralizar a carga do ânion. Para um ânion com carga x-, se utilizam x hidrogênios para formular o ácido.

Hx Ax-

Exemplos: NO31- HNO3

SO42- H2SO4

PO43- H3PO4

Nomenclatura dos ácidos

Hirácidos (H A): a nomenclatura se baseia no nome do elemento e na terminação ÍDRICO.

HCl ácido clorídrico HI ácido iodídrico H2S ácido sulfídrico

Oxiácidos (Hx A Oy): a nomenclatura se baseia no elemento central e no número de oxidação do mesmo na molécula ou no número de oxigênios do ácido. Deve-se memorizar os cinco ácidos de referência e os demais são obtidos, conforme o caso, adicionando-se ou retirando-se átomos de oxigênio da molécula do ácido.

Na tabela, o nox do elemento central e o número de oxigênios diminui da esquerda para a direita. As posições ocupadas por X indicam formulações não existentes.

máximo intermed. alto intermed. baixo mínimo

per+ico ico oso hipo+oso

HClO4 HClO3 HClO2 HClO

perclórico clórico cloroso hipocloroso

X H3PO4 H3PO3 H3PO2

fosfórico fosforoso hipofosforoso

X HNO3 HNO2 X

nítrico nitroso

X H2SO4 H2SO3 X

sulfúrico sulfuroso

X H2CO3 X X

carbônico

Os ácidos que servem de referência para a nomenclatura são os da coluna intermediário alto. A partir dele se classificam e nomeiam os demais ácido do elemento.

Quando se trata de ácidos que diferem entre si pelo número de hidratação, a nomenclatura pode se basear neste critério.

nível de hidrataçao do ácido prefixo

máximo ORTO

intermediário META

mínimo PIRO

O prefixo orto é dispensável e somente indica que tal ácido pode gerar outro por desidratação. O prefixo meta indica que tal ácido foi obtido pela retirada de uma molécula de água de uma molécula do orto. O prefixo piro indica que tal ácido foi obtido pela retirada de uma molécula de água de 2 moléculas do orto.

ácido (orto)fosfórico H3PO4

ácido metafosfórico HPO3 ( H3PO4 - 1 H2O )

ácido pirofosfórico H4P2O7 (2 H3PO4 ou H6P2O8 - 1 H2O)

A nomenclatura também pode se basear na tabela de ânions. Este tipode abordagem serve para hidrácidos e oxiácidos. Ao se dar nome a um ácido, deve-se levar em consideração a terminação do nome do ânion que origina o ácido.

terminação do ânion terminação do nome do ácido

ETO ÍDRICO

ATO ICO

ITO OSO

Cl1- cloreto HCl ácido clorídrico

SO42- sulfato H2SO4 ácido sulfúrico

Cl21- clorito HClO2 ácido cloroso

Um tipo de nomenclatura específica é a dos tioácidos. O prefixo tio é utilizado quando o ácido representa a molécula de um outro, com um átomo de enxofre (S) substituindo um de oxigênio na molécula original.

ácido ciânico HCNO ácido tiociânico HCNS


Função química é um conjunto de substâncias com propriedades químicas semelhantes. Dentre as principais funções estão os ácidos e bases.

Antes da formalização do conceito ácidos e bases

Ácidos eram caracterizados como:

Substâncias que tem sabor azedo

Conduzem corrente elétrica

Quando adicionados ao mármore e a outros carbonatos, produzir efervescência, com liberação de gás carbônico

e

Bases eram caracterizados como:

Possuir sabor adstringente, ou seja amarrar a boca

Tornar a pele lisa e escorregadia

Conduzir corrente elétrica

A formalização dos conceitos de ácido e base foi realizada por 3 teorias:

A primeira delas foi desenvolvida por Arrhenius em 1887 para explicar a condutividade elétrica de certas soluções, definiu ácidos e bases assim:

"Ácido é toda substância que em solução aquosa se dissocia fornecendo íons H+, como único tipo de cátion."

HCl




H+


+ Cl–

"Base é toda substância que , dissolvida em água, se dissocia, fornecendo íons hidróxido como único tipo de ânion."

NaOH




Na+


+OH –

Observações:

Os ácidos são compostos moleculares . Só conduzem a eletricidade em solução , pois há dissociação, formando íons. Quando puros não conduzem a eletricidade.

As bases são compostos iônicos, pois temos metal ligado ao oxigênio

Me+(OH) –

No estado sólido não conduzem a eletricidade, pois os íons estão presos. No estado fundido e em solução aquosa conduzem a corrente ,pois os íons estão libertos.

Entretanto , atualmente sabemos que um próton simples não existe em soluções aquosas. Um próton em solução aquosa se hidrata, forma cátion hidrônio: H3O+

A teoria de Bronsted – Lowry

Bronsted e Lowry em 1923, propuseram uma teoria mais ampla , válida para todos os meios ( meio alcóolico, meio aquoso, etc.)

Ácido= qualquer espécie química que doa prótons.

Base= qualquer espécie química que aceita prótons.

HBr


+


HOH




H3O+


+


Br –

Ácido








Base




Outro exemplo:

O que o íon amônio pode ser pela teoria de Bronsted – Lowry

NH4 +




NH3


+


H+

O íon amônio pode ceder prótons funcionando como ácido de Bronsted- Lowry e não pode ser base de Bronsted, pois não pode ganhar prótons.

A teoria de Lewis

Lewis em 1923, apresentou uma definição eletrônica de ácido e base, ele se baseou no conceito de base de Bronsted, que é a espécie que recebe próton, assim para receber próton, a base deve fornecer um par de elétrons para a ligação.

Ácido: toda espécie química que recebe par de elétrons.

Base: toda espécie química que doa par de elétrons.

Exemplo:

:NH3


+


HOH




[ H3N:H ] +


+


OH –

base








ácido NH 4+




O NH3 é uma base porque recebeu um próton H+ da água.

A água é um ácido porque cedeu um próton ao NH3.

quinta-feira, 2 de julho de 2020

Distribuição Eletrônica Linus Pauling e as camadas eletrônicas do átomo

Um problema para os químicos era construir uma teoria consistente que explicasse como os elétrons se distribuíam ao redor dos átomos, dando-lhes as características de reação observadas em nível macroscópico.

Foi o cientista americano Linus C. Pauling quem apresentou a teoria até o momento mais aceita para a distribuição eletrônica.

Sobre Pauling, é sempre interessante citar que ele foi duas vezes laureado com o Prêmio Nobel. O de química em 1954, por suas descobertas sobre as ligações atômicas, e o da Paz em 1962, por sua militância contra as armas nucleares.

Para entender a proposta de Pauling, é preciso primeiro dar uma olhadinha no conceito de camadas eletrônicas, o princípio que rege a distribuição dos elétrons em torno do átomo em sete camadas, identificadas pelas letras K, L, M, N, O, P e Q.


Uma característica destas camadas é que cada uma delas possui um número máximo de elétrons que podem comportar, conforme tabela que segue:

Camada

Número máximo de elétrons
K

2
L

8
M

18
N

32
O

32
P

18
Q

8

Pauling apresentou esta distribuição dividida em níveis e subníveis de energia, em que os níveis são as camadas e os subníveis divisões destes (representados pelas letras s, p, d, f), possuindo cada um destes subníveis também um número máximo de elétrons.
Subnível

Número máximo de elétrons

Nomenclatura
s

2

s2
p

6

p6
d

10

d10
f

14

f14

Quando combinados níveis e subníveis, a tabela de distribuição eletrônica assume a seguinte configuração:

Camada

Nível

Subnível

Total de elétrons
s2

p6

d10

f14
K

1

1s







2
L

2

2s

2p





8
M

3

3s

3p

3d



18
N

4

4s

4p

4d

4f

32
O

5

5s

5p

5d

5f

32
P

6

6s

6p

6d



18
Q

7

7s

7p





8

A distribuição eletrônica, conforme Pauling, não era apenas uma ocupação pelos elétrons dos espaços vazios nas camadas da eletrosfera.

Os elétrons se distribuem segundo o nível de energia de cada subnível, numa seqüência crescente em que ocupam primeiro os subníveis de menor energia e, por último, os de maior.

É esta a tradução do diagrama de energia de Pauling, que define esta ordem energética crescente que é também a seqüência de distribuição dos elétrons

Diagrama de Linus Pauling

Na figura, as setas indicam a ordem crescente dos níveis de energia: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10

Note que como a energia de 4s2 é menor, esta posição vem antes de 3p6 e 3d10.

Assim, seguindo o diagrama de Pauling, podemos montar a distribuição eletrônica de qualquer elemento químico, como por exemplo:

Elemento químico Número atômico Distribuição eletrônica
He Hélio 2 1s2
K = 2
Cl Cloro 17 1s2 2s2 2p6 3s2 3p5
K = 2, L = 8, M = 7
Zr Zircônio 40 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d2
K = 2, L = 8, M = 18, n = 10, O =2
Pt Platina 78 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 4f14 5d9
K = 2, L = 8, M = 18, N = 32, O = 16, P = 2

Lembre-se que a soma da distribuição dos elétrons, tanto nos subníveis quanto nas camadas deve bater com o número atômico, como no exemplo da Platina:

Camada

Nível

Distribuição eletrônica da platina

Total de elétrons
s2

p6

d10

f14
K

1

1s2







2
L

2

2s2

2p6




8
M

3

3s2

3p6

3d10



18
N

4

4s2

4p6

4d10

4f14

32
O

5

5s2

5p6

5d8



16
P

6

6s2



-



2
Q

7

-







-
Total



78

Algumas edições da Tabela Periódica informam também a distribuição eletrônica dos elementos químicos, o que facilita muito o trabalho de quem precisa operar estes dados.

Mas, independentemente disto, é muito importante conhecer os mecanismos que regem esta distribuição, e particularmente o conceito de níveis e subníveis de energia, ponto de partida para estudos mais avançados como os princípios da mecânica quântica.

*Carlos Roberto de Lana é engenheiro químico e professor.

quinta-feira, 4 de junho de 2020

Aminas

Aminas

Líria Alves




Trimetilamina: encontrada em peixes
Aminas são compostos orgânicos nitrogenados obtidos através da substituição de hidrogênio da amônia (NH3) por outros grupos orgânicos (radicais alquila ou arila). Elas se caracterizam pela fórmula geral que contém o elemento Nitrogênio.

As aminas se encontram em condições ambientes na forma sólida, líquida ou gasosa, o que depende de sua estrutura. Aminas alifáticas com até doze carbonos são líquidas, e as com mais de doze carbonos são sólidas, e todas elas são incolores. As líquidas são tóxicas e apresentam cheiro desagradável, e as sólidas são inodoras.

As aminas podem ser encontradas em alcalóides, compostos extraídos de vegetais e na decomposição de peixes e de cadáveres. A trimetilamina pode ser produzida por peixe em decomposição, a putrescina e cadaverina são encontradas em proteínas de organismos humanos putrefatos (cadáveres) e constituem diaminas alifáticas saturadas.

As aminas podem se classificar como bases orgânicas porque possuem um par eletrônico disponível no átomo de nitrogênio presente nestes compostos. Esta classe de compostos é empregada em sínteses orgânicas, por exemplo, na preparação de corantes, vulcanização da borracha, fabricação de sabão, etc. As aminas são ainda usadas para produzir medicamentos que produzem efeito estimulante que possuem em sua fórmula o composto amino: Cafeína, Anfetamina, entre outros.

Classificação da Matéria

Classificação da Matéria

Líria Alves




A união de vários átomos forma a matéria
Matéria é tudo aquilo que tem massa e ocupa lugar no espaço, ela é formada por pequenas partículas, designadas átomos e esses podem se unir de várias maneiras, formando as moléculas. As substâncias formadas pelo agrupamento dos átomos se classificam em: substâncias ou misturas, e se diferem em dois tipos, de acordo com suas composições:

Substâncias simples: essas apresentam apenas um tipo de átomo que pode estar agrupado em moléculas ou isolado.
Exemplos: Hidrogênio (H2) e Hélio (He).

Substâncias compostas: também chamadas de compostos, essas substâncias são formadas por mais de um elemento químico.
Exemplos: Gás carbônico (CO2), Amônia (NH3), Água (H2O), Gás cianídrico (HCN).

Veremos agora as “Misturas”, elas são formadas por mais de uma substância.

Misturas: As misturas podem se classificar em Misturas homogêneas ou heterogêneas.

Misturas homogêneas: essas misturas apresentam uma única fase. Quando misturamos água e álcool, nem com o auxílio de um microscópico poderíamos ver a separação dos dois líquidos, dizemos então que a mistura possui uma só fase, ou seja, é uma mistura homogênea. Exemplo: a água oxigenada, ela contém água (H2O) e peróxido de hidrogênio (H2O2).

Misturas heterogêneas: apresentam mais de uma fase. Exemplo: a água e o óleo quando se misturam. A água se separa completamente do óleo, sendo assim, a mistura se torna heterogênea porque vemos nela duas fases.

Mais exemplos:
1. Mistura heterogênea: fumaça que polui o meio ambiente, quando observada ao microscópio mostra minúsculas partículas de carvão suspensas.

2. Mistura homogênea: álcool + água + acetona, juntos apresentam uma única fase.

Hidrogênio Energia alternativa do futuro?

A possibilidade de uso do hidrogênio como combustível é promissora, mas ainda não resolve o problema de substituir o petróleo como fonte de energia. Você já deve ter ouvido algumas vezes, nos últimos anos, que o hidrogênio é tido como o "combustível do futuro", ou até o termo "economia do hidrogênio", isto é, uma cadeia energética baseada em H2 e não em petróleo. Mas por que o hidrogênio?

A principal razão é que a queima de hidrogênio libera muita energia (242kJ/mol, ou 121kJ/g) e tem como subproduto a água:



É difícil imaginar algo mais distante de um poluente do que a água. Nessa reação, o subproduto poderia, em princípio, ser descartado sem maiores preocupações!

Queima de hidrogênio
A queima de hidrogênio (H2) pode ser feita de forma idêntica à de outros combustíveis, como GLP (gás liquefeito de petróleo) ou gás natural. A chama da queima do hidrogênio chega a 2.400oC, um pouco mais do que se obtém na queima de gás natural ou gasolina. Ele também pode ser usado em pilhas de combustível. É abundante - na verdade, é o elemento mais abundante no universo, embora na Terra não chegue a 0,88% em peso.

Ainda assim, o hidrogênio representa o terceiro elemento em número de átomos, com 15,4%. Pode ser obtido da própria água, que é abundante, e um quilo de água seria capaz de fornecer 111g de hidrogênio gasoso, o que dá por combustão a mesma energia que 0,4 litro de gasolina ou 0,63 litro de álcool anidro. Tudo somado, esse parece ser um excelente negócio!

Fontes e vetores energéticos
Mas o hidrogênio seria obtido de onde? Repare que esse elemento praticamente não existe livre na natureza, de forma que o gás hidrogênio é antes um vetor energético do que uma fonte. O petróleo também é um vetor - isto é, um material no qual se acumulou outro tipo de energia, nesse caso a solar.

No petróleo, a energia foi armazenada, através da fotossíntese, em biomoléculas que resultaram, após milênios comprimidas sob pesadas camadas de rochas, em uma mistura de hidrocarbonetos. Aliás, se traçarmos a origem da energia da maioria das "fontes", incluindo carvão, gás natural e até a energia hidrelétrica, vamos encontrar o Sol.

Voltando ao hidrogênio, podemos então continuar a chamá-lo de fonte de energia, lembrando, porém, que permanece a pergunta: como obtê-lo? E, aliás, porque é que o hidrogênio da natureza não serve como fonte de energia?

H+ não serve...
Ocorre que o hidrogênio da natureza está virtualmente todo na forma H+, que tem o mesmo valor, como combustível, que ferrugem ou cinza de papel, isto é, nenhum...

Dizemos que o hidrogênio está na forma oxidada e, como a água, já é um produto da oxidação do hidrogênio. Reagentes que tenham H+1 não servem. Você pode se perguntar: "Mas e os combustíveis como o álcool (C2H6O) e os hidrocarbonetos, não têm todos H+1? Como assim, não servem?" Acontece que nesses combustíveis quem está na forma reduzida e pode liberar energia na oxidação é o carbono. O hidrogênio é só um acompanhante...

Portanto, na base de uma economia do hidrogênio está a obtenção desse elemento em formas reduzidas (0 ou até -1), essas sim capazes de fornecer energia através de reações como a combustão. E para obter esse H2 é necessário "investir" energia de outro tipo, por exemplo, a elétrica.

Considerando perdas de energia no processo, a reação a seguir, a eletrólise, consome mais de 16MJ (megajoules) por quilograma de água

Folha Imagem


Para comparação da quantidade de energia armazenada, considere que um chuveiro elétrico de 5kW gastaria essa mesma energia em 8 horas!

O futuro do hidrogênio
Podemos concluir que o H2 é promissor, mas não resolve o problema de uma fonte "real" de energia. E essa é só metade da história, porque ainda há a questão de como armazenar e transportar essa substância de forma segura. O H2 é um gás que só pode ser liquefeito a temperaturas baixas e pressões relativamente altas, além de ser facilmente inflamável.

Como se vê, ainda há muitos problemas interessantes a resolver. Alguém se habilita?

* Júlio César de Carvalho é engenheiro químico e professor do curso de engenharia de bioprocessos e biotecnologia da Universidade Federal do Paraná (UFPR).

Massa atômica Qual a unidade de medida dessa grandeza tão pequena

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
www.youtube.com/accbarroso1  


Todos nós já subimos em uma balança para ver nosso "peso". Note que peso está entre aspas porque o que vamos medir em uma balança é nossa massa, embora costumeiramente a chamemos de peso. O que poucos de nós fez foi parar para pensar de onde surgiu o grama. Por que minha massa é aproximadamente 80 quilogramas? Como isso foi quantificado?

Todas as medidas de uma grandeza (massa, distância, temperatura) são feitas por comparação com uma grandeza padrão. Essa grandeza padrão é escolhida ou criada de acordo com algumas conveniências, principalmente a facilidade de ela ser reproduzida.

Padrões de medida
Quando digo então que minha massa é de 80 kg, estou dizendo que minha massa corresponde a 80 vezes a massa adotada como padrão, no caso o quilograma. Quando digo que minha altura é de 1,80 m, estou dizendo que ela corresponde a 1,8 vezes o comprimento padrão, o metro.

Um átomo, porém, é suficientemente pequeno para não poder ser visto, e também não pode ser colocado em uma balança. O que não é muito difícil é fazer a comparação entre átomos, saber quantas vezes um apresenta o peso do outro. Assim, se escolhermos um deles como padrão, teremos criado nossa própria escala de massa atômica.

Unidade de massa atômica
Na convenção da IUPAC (União Internacional de Química Pura e Aplicada) realizada em 1961, adotou-se como unidade padrão para massa atômica o equivalente a 1/12 da massa do isótopo 12 do elemento carbono.

Por mais confuso que pareça, na verdade é simples. Dessa forma, a massa de um átomo, medida em unidades de massa atômica, corresponde a quantas vezes esse átomo é mais pesado que 1/12 do isótopo 12 do carbono.

Só de curiosidade: 1u (unidade de massa atômica) corresponde a 1,66.10-24g, que equivale aproximadamente à massa de um próton ou de um nêutron.

Massa atômica
Corresponde, portanto a quantas vezes o átomo em questão é mais pesado que o padrão, unidade de massa atômica (1/12 do isótopo 12 do carbono). Quando dizemos que um átomo de enxofre tem massa 32, estamos dizendo que sua massa é 32 vezes maior que 1/12 da massa do isótopo 12 do carbono.

Devemos lembrar que elemento químico é o conjunto de átomos que possuem mesmo número atômico (Z). Dentro desse conjunto, lembre-se que existem isótopos, ou seja, átomos que apresentam igual número atômico e diferente massa atômica. Tomemos um exemplo:

Para o elemento cloro, de número atômico 17, existem dois isótopos, um com massa 35 e um com massa 37. Qual massa adotar?

O que se faz é o seguinte:

# verificamos o percentual de ocorrências do isótopo 35 e o percentual de ocorrência do isótopo 37:

isótopo 35 do cloro - 75% de ocorrência
isótopo 37 do cloro - 25% de ocorrência

# calculamos a média ponderada desses isótopos:

MA = (75.35 + 25.37) / 100 = 35,5

A massa tabelada para o elemento cloro será então 35,5, ou seja, a média ponderada entre seus isótopos.




Viu como embora o padrão seja um pouco esquisito, a massa atômica não é nada do outro mundo?
Fábio Rendelucci é professor de química e física, diretor do cursinho COC-Universitário de Santos e presidente da ONG Sobreviventes

Tabela Periódica

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com



Observação – O elemento hidrogênio, por apresentar diferenças em relação aos demais elementos de seu grupo, não pertence a família 1A (ou 1).

Famílias B (3B a 2B) ou 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Abrangem os elementos chamados de transição.

O último nível desses elementos geralmente apresenta dois elétrons, e o penúltimo de nove a dezoito elétrons (nível em transição crescente).

Exemplos:

a) Escândio (Sc; 21): 2-8-9-2 (3B ou 3)

b) Titânio (Ti; 22): 2-8-10-2 (4B ou 4)

c) Ferro (Fe; 26): 2-8-14-2 (8B ou 8)

Observações:

1. As famílias 1B (ou 11) e 2B (ou 12) são casos particulares, pois, embora possuam a configuração eletrônica de elementos representativos, apresentam propriedades químicas de elementos de transição.

2. Note que a primeira família é 3B para que haja concordância do número da família com a valência do elemento químico.

Elementos de transição interna: lantanídeos e actinídeos

O último nível dos elementos de transição interna geralmente apresenta dois elétrons, e o penúltimo oito. O antepenúltimo cresce de 19 a 32 elétrons (nível interno em transição crescente).

Exemplos:

a) Cério (Ce; 58): 2-8-18-20-8-2

b) Prasiodímio (Pr; 59): 2-8-18-21-8-2

c) Plutônio (Pu; 94): 2-8-18-32-24-8-2

O elemento de transição interna mais importante é o urânio, usado nos reatores atômicos para produção de energia elétrica, o qual substitui quantidades fantásticas de petróleo.

Diferenciação dos três tipos de elementos por meio do último subnível

Elementos representativos

Podem terminar em subnível do tipo s (1A e 2A) ou do tipo p (3A a 8A), ambos pertencentes ao último nível de cada átomo (nível em crescimento).

Exemplos:

1) 12Mg: 1s2 2s2 2p6 3s2 (período 3 e família 2A ou 2

2) 18Ar: 1s2 2s2 2p6 3s2 3p6 (período 3 e família 8A ou 18

Reações químicas (tipos) Síntese, análise e deslocamento, dupla-troca

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
www.youtube.com/accbarroso1 

As reações químicas são processos que transformam uma ou mais substâncias, chamados reagentes, em outras substâncias, chamadas produtos. Em uma linguagem mais acadêmica, dizemos que uma reação química promove mudança na estrutura da matéria.

Na química inorgânica podemos classificar as reações em quatro tipos diferentes:

1) Reações de síntese ou adição
As reações de síntese ou adição são aquelas onde substâncias se juntam formando uma única substância. Representando genericamente os reagentes por A e B, uma reação de síntese pode ser escrita como:



Veja alguns exemplos:

Fe + S=FeS

2H2 + O2= 2H2O

H2O + CO2= H2CO3

Perceba nos exemplos que os reagentes não precisam ser necessariamente substâncias simples (Fe, S, H2, O2), podendo também ser substâncias compostas (CO2, H2O) mas, em todas elas o produto é uma substância "menos simples" que as que o originaram.

2) Reações de análise ou decomposição
As reações de análise ou decomposição são o oposto das reações de síntese, ou seja, um reagente dá origem a produtos mais simples que ele. Escrevendo a reação genérica fica fácil entender o que acontece:



Não parece bastante simples? E é bastante simples. Veja nos exemplos:

2H2O 2= H2 + O2

2H2O2 =2H2O + O2

Reversibilidade das reações químicas
Os exemplos podem sugerir que qualquer reação de síntese pode ser invertida através de uma reação de análise. Isso não é verdade. Algumas reações podem ser reversíveis, como podemos notar na reação da água:

2H2 + O2= 2H2O
2H2= 2H2 + O2

Entretanto, isso não é uma regra.

3) Reações de deslocamento
As reações de deslocamento ou de simples-troca merecem um pouco mais de atenção do que as anteriores. Não que sejam complicadas, pois não são, mas por alguns pequenos detalhes. Em sua forma genérica ela pode ser escrita como:



Vamos entender o que aconteceu: C trocou de lugar A. Simples assim, mas será que isso ocorre sempre? É intuitivo que não. Iamgine o seguinte: você entra em um baile e vê a pessoa com quem gostaria de dançar dançando com outra pessoa. Você vai até lá e tentará fazê-la mudar de par, ou seja, estará tentandodeslocar o acompanhante indesejável e assumir seu lugar. Se você for mais forte que o "indesejável", basta dar-lhe um empurrão e assumir seu lugar mas, se ele for um brutamontes troglodita, possivelmente ele nem sentirá seu empurrão. Na reação de deslocamento o processo é idêntico: C vê B ligado a A, aproxima-se e, sendo mais forte, desloca A e assume a ligação com B. Caso C não seja mais forte que A nada acontece.

Basta então saber que é mais forte que quem:


Desta forma, temos:

2Na + 2H2O =2NaOH + H2 (o sódio desloca o hidrogênio da água H-OH)

Au + HCl não reage (o ouro não consegue deslocar o hidrogênio)

4) Reações de dupla-troca
São também muito simples, mas devemos também ficar atento a detalhes. O mecanismo é fácil:



Certamente você já percebeu o que aconteceu: A trocou de lugar com C. A diferença desse tipo com as de deslocamento é que nem A nem C estavam sozinhos e, após a troca nenhum deles ficou sozinho.

Para entendermos como e quando uma reação deste tipo ocorre teremos que observar o seguinte:

# A substância AB está em solução e, desta forma, o que temos na verdade são os íons A+ e B- separados uns dos outros. A substância CD também está em solução, portanto temos também os íons C+ e D- separados;

# Quando juntamos as duas soluções estamos promovendo uma grande mistura entre os íons A+, B-, C+ e D-, formando uma grande "sopa de íons";

# Se, ao combinarmos C+ com B-, o composto CB for solúvel, os íons serão novamente separados em C+ e B-, resultando exatamente na mesma coisa que tínhamos anteriormente. O mesmo acontece com A+ e B-.

Assim, ao misturarmos AB com CD, estamos na verdade fazendo:




E perceba que juntar íons que se separarão novamente resultará na mesma "sopa de íons" e não resultará em nenhuma nova substância, portanto não ocorre nenhuma reação.

Para que a reação efetivamente ocorra, será necessário que ao menos um dos prováveis produtos (AD ou CB) não sejam separados ao se juntarem, ou seja, deve-se formar um composto insolúvel e isso é conseguido através de um sal insolúvel, de um gás ou de água. Se um dos produtos for um sal insolúvel ele não será separado em ións e permanecerá sólido. Se for um gás ele se desprenderá da solução (borbulhas) e também permanecerá com suas moléculas agrupadas. Se um dos produtos for a água, ela não se desagrupa em sua própria presença.

NaCl + AgNO3= NaNO3 + AgCl

Nesta reação o produto AgCl (cloreto de prata) é insolúvel, portanto a reação ocorre.

NaCl + LiNO3= NaNO3 + LiCl

Como nenhum dos produtos formados, NaNO3 (nitrato de sódio) ou LiCl (cloreto de lítio) é insolúvel, a reação não ocorre.

NaOH + HCl= NaCl + H2O

Como um dos produtos é a água (H2O), a reação ocorre.

Para a previsão da ocorrência ou não de uma reação de dupla-troca é fundamental que conheçamos a solubilidade dos sais em água e, para relembrar isso, leia o texto sobre solubilidade em água.

Viu como é simples? Com um pouco de prática e exercícios você consegue até escrever reações que podem dar origem a um determinado produto. Quer ver?

Imagine que você que obter sulfato de chumbo (PbSO4) . Você sabe que terá que juntar o íon chumbo (Pb2+) e o íon sulfato (SO42-). Como você sabe que o sulfato de chumbo é insolúvel, pode promover uma dupla-troca:

PbX + YSO4= PbSO4 + XY

É só escolher X e Y de forma que as duas substâncias sejam solúveis.

Outra forma é fazer um deslocamento do hidrogênio pelo chumbo, já que este é mais reativo:

Pb + H2SO4 =H2 + PbSO4

Não falei que era fácil?
* Fábio Rendelucci é professor de química e física e diretor do cursinho COC-Universitário de Santos (SP).