Mostrando postagens com marcador Física. Mostrar todas as postagens
Mostrando postagens com marcador Física. Mostrar todas as postagens

sábado, 25 de abril de 2020

Energia renovável Microbiologia pode gerar fontes alternativas


Bactérias que podem ser transformadas em combustível
Será que a busca por energias renováveis, uma das maiores preocupações globais hoje em dia, poderá ser solucionada por bactérias? Uma resposta afirmativa é a conclusão é de um relatório da Academia Norte-Americana de Microbiologia sobre a demanda por fontes de energia limpa e renovável, divulgado em novembro de 2006.

O relatório "Conversão de Energia Microbiológica" detalha diversos métodos de utilização de micróbios para a produção de combustíveis alternativos, como etanol, hidrogênio, metano e butanol. O documento discute também vantagens, desvantagens e dificuldades técnicas de cada metodologia de produção, além de indicar futuras necessidades de pesquisas.

Confirmando as previsões de outros cientistas, os autores do relatório afirmam que o planeta deverá passar por uma violenta crise energética dentro de 30 a 50 anos. Os meios para prevenir a catástrofe da escassez de energia e da tragédia ambiental são incertos, segundo eles, mas parte da solução pode estar na conversão de energia microbiológica.

Energia microbiológica
Os autores apresentam uma série de recomendações para que a energia microbiológica se transforme em realidade. Será preciso, por exemplo, otimizar os processos de pré-tratamento de diferentes biomassas para substratos variados a fim de viabilizar a produção de etanol a partir das bactérias.

Entre as tecnologias mencionadas essa é a mais avançada hoje, segundo o relatório, mas sua produção a partir de biomassas como a celulose é difícil e cara. Já o hidrogênio, segundo o estudo, pode ser produzido a partir da água, aproveitando a fotossíntese em cianobactérias e outros micróbios. Os recursos necessários para essa tecnologia - água e luz solar - são praticamente ilimitados, mas a eficiência do processo ainda é baixa.

O documento também aborda o campo relativamente novo das células a combustível com base microbiológica. Nesse sistema, os microrganismos recebem um suprimento constante de biomassa e seus processos biossintéticos são, na maior parte, desviados para a geração contínua de eletricidade.

"O estudo de células combustíveis microbiológicas ainda está engatinhando, mas identificamos que há grande potencial de dar um salto nesse sentido", disse Judy Wall, da Universidade do Missouri, co-autora do relatório.

Com informações da Agência FAPESP.

Eletrólitos Soluções que permitem a passagem de corrente elétrica


Uma solução é capaz de conduzir corrente elétrica? Por que levamos um choque maior quando estamos molhados do que quando estamos secos? O que é "água de bateria"? Questões como essas nos remetem à mesma resposta: eletrólitos.

A corrente elétrica, como sabemos, é o fluxo ordenado de elétrons, ou seja, os elétrons se movimentando de um ponto a outro. Para isso acontecer, duas coisas são fundamentais: uma diferença de potencial, capaz de atrair os elétrons e um meio de propagação que permita sua passagem.

Os eletrólitos são soluções que permitem a passagem dos elétrons, mas isso não garante que eles possam trafegar livremente. Nos eletrólitos os elétrons trafegam "presos" aos íons. Existem eletrólitos fortes, que praticamente não impedem a passagem dos íons, eletrólitos médios, que apresentam alguma resistência à corrente, eletrólitos fracos, que se opõem fortemente - mas permitem - a passagem da corrente, e os não-eletrólitos, soluções que não permitem que a corrente elétrica os atravesse.

Como funciona o eletrólito?
Quando aplicamos uma diferença de potencial em um material, o pólo positivo começa a atrair os elétrons desse material que, chegando ao pólo, caminham pelo circuito até chegar na outra ponta, o pólo negativo, onde podem ser reinseridos no material. Está complicado? Vamos pensar diretamente nos eletrólitos que a explicação ficará mais clara.

Pense em uma solução de cloreto de sódio em água. Sabemos o sal irá se dissociar em íons Na+ e Cl-. Quando mergulhamos dois fios na solução, um ligado ao pólo positivo e um ao negativo de uma pilha, o positivo começa a atrair os íons de carga negativa - no caso o cloreto (Cl-) - por possuírem cargas elétricas opostas.

Ao atingir o pólo positivo, o elétron excedente do íon é capturado pelo pólo fazendo com que o Cl- se transforme em Cl. O pólo negativo atraiu os íons sódio (Na+) e o elétron capturado percorre todo o circuito até chegar ao pólo negativo, encontrando então o íon. Como o íon é positivo, ele tem falta de elétrons, portanto ele captura o elétron "disponível" no pólo negativo e também deixa de ser um íon, neutralizando-se.

Cloreto de sódio
Acredito que esse exemplo tornou o mecanismo mais compreensível, mas gostaria de ressaltar que no caso do NaCl não é exatamente assim que acontece. Você poderá perguntar: então por que esse exemplo, já que não é bem assim? A idéia é que você entenda primeiramente o mecanismo. Para fins didáticos, o cloreto de sódio é um ótimo exemplo, pois estamos muito habituados a ele.

Você percebeu que - para uma solução permitir a condução de corrente - uma coisa parece fundamental: a presença de íons na solução. Os íons são as "caronas" que citei anteriormente, são eles que permitirão o fluxo eletrônico.

Qualquer solução tem íons?
Não. Nem todas as substâncias quando em solução libera íons. Compostos iônicos como os sais e bases já são formadas por íons e, quando em solução, os deixam livres, em um processo que chamamos de dissociação. Compostos como os ácidos, que não possuem íons quando em solução sofrem um processo que chamamos de ionização e passando a possuí-los, embora livres. Substâncias moleculares que não sofram ionização não liberarão nenhum tipo de íon quando em solução.

Dessa forma, podemos dizer que:

* Substâncias iônicas, quando em solução ou quando fundidas (líquidas), liberam íons, portanto conduzem corrente elétrica.
* Substâncias moleculares, quando em solução, se sofrerem ionização, liberam íons e conduzem corrente elétrica. Se não sofrerem ionização não conduzem corrente.
* Substâncias iônicas ou moleculares, quando no estado sólido não liberam íons e não conduzem corrente elétrica.



Para que uma solução seja um eletrólito é necessária a existência de íons livres.

Respondendo às questões iniciais:
1) Por que levamos um choque maior quando estamos molhados do que quando estamos secos?
R.: Porque, quando molhados, os sais existentes em nossa pele, resultado da transpiração, formam um eletrólito forte, facilitando a passagem da corrente elétrica.

2) O que é "água de bateria"?
R.: É um eletrólito capaz de permitir a troca de elétrons entre as placas que constituem a bateria. Normalmente são soluções ácidas.
* Fábio Rendelucci é professor de química e física e diretor do cursinho COC-Universitário de Santos (SP).

Cinemática -b Movimento uniformemente variado e equação de Torricelli

Considere um movimento em que a velocidade do móvel varia, ou seja, o móvel tem aceleração. Se essa aceleração for constante, dizemos que esse móvel está executando um movimento uniformemente variado. Um exemplo clássico desse tipo de movimento é o da queda dos corpos sob ação exclusiva da gravidade.

Por ter uma aceleração constante, esse movimento também pode ser descrito por funções matemáticas, como veremos a seguir.

A aceleração no movimento uniformemente variado
Como se disse, a aceleração no movimento uniformemente variado é constante. Por esse motivo, o seu valor acaba coincidindo com o valor da aceleração média. Ou seja: quando um móvel executa esse movimento, podemos calcular a sua aceleração com a mesma fórmula da aceleração média.



A velocidade no movimento uniformemente variado
Quando um móvel tem aceleração constante, significa que ele terá a sua velocidade variando sempre de um mesmo valor em um mesmo intervalo de tempo. Por exemplo: se tivermos uma composição do metrô que parte do repouso e tem uma aceleração constante de 1 m/s2, isso significa que a cada intervalo de tempo de um segundo, a sua velocidade aumentará de 1 m/s. Com isso, é possível saber com que velocidade ele irá apresentar em um determinado instante. No caso do metrô, depois de 10s, a composição terá a velocidade de 10 m/s.

Quando a velocidade varia em função do tempo de maneira previsível, ela pode ser calculada através de uma função conhecida como função horária da velocidade. No movimento uniformemente variado essa função é do primeiro grau e é dada a seguir.



Onde v0 é a velocidade inicial, v a velocidade final e a é a aceleração.

O gráfico da função acima será uma reta, pois ela é uma função do primeiro grau.





A equação acima nos mostra como a velocidade varia em função do tempo. Mas essa não é a única maneira de se determinar a velocidade. Afinal, além do tempo, o espaço também varia. Por isso, também é possível estabelecer uma relação entre velocidade e espaço. Essa relação é conhecida por equação de Torricelli e é representada a seguir:





A equação de Torricelli é muito útil nas situações em que se conhece apenas o deslocamento do móvel, e não o tempo.

A função horária dos espaços
Como se disse sobre o movimento uniforme, uma função horária dos espaços é uma função que relaciona espaço e tempo. Também se viu naquela situação, que a função horária dos espaços era uma função do primeiro grau, pois a velocidade era constante.

Agora estamos lidando com uma situação em que existe aceleração, que é constante, e por isso a função horária dos espaços do movimento uniforme nessa situação não funciona. Para o movimento uniformemente variado, a função horária dos espaços deve vir com um termo de aceleração, como está mostrado na equação a seguir:



Essa é a função horária dos espaços para o movimento uniformemente variado.

Observe que essa função é uma função do segundo grau. Seu gráfico, portanto, será uma parábola.




A concavidade dessa parábola depende do sinal da aceleração, isto é, se a aceleração for positiva, a concavidade será para cima e se a aceleração for negativa, a concavidade será para baixo. Note também que o ponto de onde se inicia a curva do gráfico indica o espaço inicial do movimento.

A queda livre dos corpos
A queda livre dos corpos foi elucidada por Galileu em 1604. Uma das conclusões tiradas por ele e de fundamental importância para o entendimento do movimento de queda dos corpos é aquela que diz que os corpos em queda, sob ação exclusiva da gravidade, terão a mesma aceleração independentemente das suas massas. Galileu nos ensinou que, se tivermos dois corpos de massas diferentes e os abandonarmos da mesma altura, eles chegarão ao solo ao mesmo tempo, desde que a resistência do ar seja desprezível.

Isso vai contra o senso comum, que nos faz imaginar que o corpo mais pesado deverá chegar primeiro. Para provar que Galileu estava certo, faça a seguinte experiência: pegue uma folha de papel aberta e um livro e os abandone da mesma altura. O livro chegará primeiro. Agora amasse a folha e repita o experimento. Você observará os dois chegando juntos. Por que isso ocorre?

Agora faça o seguinte: pegue uma folha de papel aberta e coloque sobre o livro (a folha deverá ter tamanho menor que a capa do livro). Pense no que irá ocorrer, e em seguida os abandone. O que aconteceu e por quê?

A aceleração dos corpos em queda será a aceleração da gravidade local, que nas proximidades da Terra tem um valor constante de aproximadamente 9,8 m/s2. Por essa aceleração ser constante, o movimento de queda livre é um movimento uniformemente variado. Por isso as equações que descrevem esse movimento podem ser usadas no estudo da queda livre dos corpos.




Onde g é a aceleração da gravidade local e h é a altura do corpo. Se tivermos um corpo que é abandonado do repouso, ou seja, com velocidade inicial igual a zero, a função horária dos espaços pode ser reduzida a uma equação que dará o tempo de queda.



Paulo Augusto Bisquolo é professor de física do colégio COC-Santos (SP).

Cinemática -a Entenda o que são velocidade e aceleração escalar média

Observamos ao nosso redor um mundo em movimento. Podemos notar os carros se locomovendo, as pessoas andando, um objeto que cai e mais uma série de exemplos que poderiam ser citados. O interessante é saber que uma boa parte dessas situações podem ser descritas e que - se o movimento de um objeto mantiver uma certa regularidade - poderemos saber o que ocorreu antes e o que vai acontecer depois. Quando fazemos a descrição do movimento sem nos preocupar com as suas causas estamos entrando em uma área da física conhecida como cinemática.

Referencial
Em uma viagem de carro você observa o velocímetro e ele indica 100 km/h. Ao mesmo tempo o seu veículo está ultrapassando um caminhão cujo velocímetro indica 80 km/h. Será que o caminhoneiro irá observar o seu carro também a 100 km/h?

A resposta dessa pergunta vem do conceito de referencial, que pode ser considerado como um marco ou ponto de referência usado para definir a posição de outros objetos. Os velocímetros são fabricados para registrar velocidades em relação a um referencial fixo na Terra, ou seja, o automóvel está a 100 km/h em relação à Terra.

Para o caminhoneiro que está em movimento, ele não verá o seu automóvel a 100 km/h, mas a 20 km/h, ou seja, a velocidade do seu carro menos a velocidade do caminhão. Se você e o caminhão estivessem em sentidos opostos, qual seria a sua velocidade em relação ao caminhão?

Um referencial adotado não altera somente a noção de velocidade, mas pode alterar a noção de repouso e movimento. Considere o seguinte exemplo: Você está sentado em um ônibus. Se adotarmos como referencial o ônibus, você está em repouso, mas se o referencial for um observador em um ponto fixo da Terra, você estará em movimento.

Trajetória
Outra grandeza que pode ser alterada pela adoção de referenciais é a trajetória. A trajetória pode ser considerada como o conjunto dos pontos percorridos por um móvel, como por exemplo, quando se faz um risco com giz em uma lousa, os pontos percorridos pelo giz ficarão marcados e definirão a sua trajetória.

Como dissemos, a trajetória pode mudar com a mudança de referencial. Considere que você está novamente sentado em um ônibus. Nesse instante, ele está em uma trajetória retilínea e com velocidade constante. De repente, uma lâmpada presa ao teto cai. Para você, que está no ônibus, a trajetória descrita pela lâmpada será retilínea. Porém, para um observador externo e em repouso em relação a Terra, a trajetória será um arco de parábola.

Espaço
No estudo do movimento, além da trajetória, é importante localizar a posição do móvel. Quando você está viajando em uma estrada, de quilômetro em quilômetro, encontra-se uma placa indicando a quilometragem. O valor dessa placa mostra a que distância você se encontra do marco zero dessa estrada, ou seja, a sua posição em relação à origem da trajetória.

Por exemplo, a Rodovia dos Imigrantes, que liga a cidade de São Paulo à baixada santista, tem as suas quilometragens marcadas em relação ao marco zero da cidade de São Paulo que se encontra na Praça da Sé. Em outras palavras, quando você está no quilômetro 50 da rodovia, isso significa que você está a 50 km da Praça da Sé. Podemos, então, definir espaço como sendo a distância entre um ponto na trajetória e a sua origem, e serve para indicar a posição do móvel.

O conceito de velocidade e velocidade média
Para entender o conceito de velocidade, imagine novamente você em um carro a 100 km/h em uma agradável viagem de férias. O que essa indicação significa? Significa que se seu o automóvel mantiver essa velocidade, ele percorrerá 100 km a cada intervalo de tempo de uma hora, ou seja, a velocidade é uma grandeza que mostra o quanto um móvel percorre em um determinado intervalo de tempo.

Agora, é muito pouco provável que, em um longo intervalo de tempo, você consiga manter sempre essa mesma velocidade constante. Se mencionarmos o trânsito urbano, isso se torna uma tarefa praticamente impossível. Dessa situação podemos entender o conceito de velocidade média. Tome como exemplo a locução de uma corrida de Fórmula 1. É comum ouvirmos o locutor dizer que determinado carro teve, durante uma volta, a velocidade média de, por exemplo, 170 km/h. Isso não significa que o carro manteve essa velocidade durante toda a volta. Esse número mostra o valor da velocidade que melhor representa todas as velocidades que ele teve durante essa volta.

Para efetuar o cálculo da velocidade média, considere um móvel que se locomove em uma trajetória como ilustrado na figura abaixo.





No espaço inicial S0, é acionado o relógio e se registra o tempo inicial t0. Mais à frente, quando esse mesmo móvel passar pelo espaço final S, novamente se observa o relógio e anota-se o tempo final t. De posse desses dados é possível calcular o deslocamento escalar do móvel, que será o espaço final menos o espaço inicial, e o intervalo de tempo decorrido, que será o tempo final menos o tempo inicial.



A velocidade escalar média é definida como sendo o deslocamento escalar dividido pelo intervalo de tempo gasto pelo móvel.




As unidades mais usadas para velocidade são o m/s, que é a unidade do Sistema Internacional, e o km/h, que é a unidade usada no nosso dia a dia. Elas podem ser convertidas se usarmos a seguinte relação.




Aceleração escalar e aceleração escalar média
Aprendemos no nosso cotidiano que a velocidade não é uma grandeza que obrigatoriamente tem valor constante, ela pode variar a sua intensidade em um grande número de casos. Por exemplo, quando um ciclista inicia o movimento de uma bicicleta, ele necessariamente a tira do repouso e pedala até atingir a velocidade desejada, e assim dizemos que ele imprimiu uma aceleração a bicicleta. Note que a aceleração é uma grandeza que está intimamente ligada à variação de velocidade.

Desse modo a aceleração escalar média pode ser definida como a variação de velocidade do móvel dividido pelo intervalo de tempo necessário para essa variação, ou seja:





A unidade de aceleração vem da divisão entre a unidade de velocidade pela unidade de tempo. Utilizando as unidades do Sistema Internacional, teremos a seguinte unidade para a aceleração:



Página 3


Classificação dos Movimentos
Para que seja possível classificar o movimento, primeiramente é importante entender o conceito de trajetória orientada. É muito comum encontrarmos trajetórias orientadas no nosso dia-a-dia, basta observar a sua rua. As casas possuem uma numeração e o sentido da sua rua é o sentido crescente da numeração das casas. Então, uma trajetória orientada é uma trajetória com uma origem e um sentido que é indicado pela ordem crescente das indicações das posições.

Um primeiro critério a ser adotado é quanto ao sentido do movimento, afinal um móvel pode estar se locomovendo a favor do sentido da trajetória ou contra o sentido da trajetória. Quando um móvel está se locomovendo a favor da trajetória, dizemos que ele executa um movimento progressivo, que é caracterizado pelo deslocamento escalar () positivo ou por uma velocidade positiva.

Por outro lado, quando um móvel se locomove contra o sentido da trajetória, define-se esse movimento como movimento retrógrado ou regressivo, que é caracterizado pelo deslocamento escalar () negativo ou por uma velocidade negativa.

O outro critério adotado para a classificação dos movimentos, é quanto à intensidade da velocidade. Quando a intensidade da velocidade do móvel aumenta, esse móvel está executando um movimento acelerado e as suas características estão apresentadas na figura abaixo.





Se a intensidade da velocidade do móvel diminuir, o mesmo estará executando um movimento conhecido por movimento retardado, e as suas características estão demonstradas na figura abaixo.



Paulo Augusto Bisquolo é professor de física do colégio COC-Santos (SP).

quinta-feira, 23 de abril de 2020

Eletricidade e o magnetismo

Eletricidade e o magnetismo
Você faz bastante uso da eletricidade em seu dia-a-dia, não é mesmo? Mas já parou para pensar na falta que ela faria na sua vida, se não existisse?
Se faltar energia elétrica à noite, ficamos sem luz elétrica e tudo pára: a televisão, o chuveiro elétrico, o ventilador, alguns aparelhos de telefone, o aparelho de som, o computador, o microondas, os elevadores etc.

Alguns aparelhos funcionam com a energia recebida das estações distribuidoras de energia elétrica; basta ligá-los na tomada. Mas há muitos outros aparelhos que funcionam utilizando energia elétrica sem termos de ligá-los diretamente na tomada, como o celular, o rádio, os walkmans ou iPODs e as calculadoras; eles recebem energia de pilhas e baterias.
Outro tipo de energia muito usada em nosso cotidiano é a energia magnética. Graças ao magnetismo, podemos ter registros armazenados em fitas cassetes e fitas de vídeo, podemos usar as bússolas para nos localizarmos etc.
A revolução que a humanidade experimentou advinda das aplicações da eletricidade e do magnetismo se intensificou quando os cientistas perceberam a relação entre ambos.
Cargas elétricas
Cargas elétricas são de dois tipos: positivas e negativas
Uma matéria é constituída de átomos. Os átomos, por sua vez, são constituídos de partículas ainda menores: prótons, nêutrons e elétrons.
Os prótons e os nêutrons situam-se no núcleo do átomo. Os elétrons giram e torno do núcleo, numa região chamada eletrosfera. Os prótons e os elétrons possuem uma propriedade denominada carga elétrica, que aparece na natureza em dois tipos. Por isso a do próton foi convencionada como positiva e a do elétron como negativa.

Corpos carregados
Quando um corpo ganha elétrons dizemos que ele está positivamente carregado. Quando ganha elétrons dizemos que ele está negativamente carregado. Quando o número de elétrons em um corpo é igual ao número de prótons, dizemos que o corpo está neutro.
Um experimento relacionado aos primórdios do estudo da eletricidade pode ser realizado com um bastão de vidro pendurado por um barbante. Se atritarmos esse bastão em um pedaço de lã, notaremos que ambos se atrairão mutuamente. Agora se atritarmos o bastão de vidro no tecido de lã e o deixarmos pendurado, aproximando dele outro bastão de vidro que tenha sido friccionado em outro pedaço de lã, notaremos que os bastões se repelem.

Essas observações demonstraram a ocorrência de fenômenos elétricos. Os cientistas consideram que, ao atritarmos os materiais vidro e lã, o bastão de vidro passa a ser portador de carga elétrica positiva e o pedaço de lã passa a ser portador de carga elétrica negativa. Os sinais de positivo e negativo atribuídos a essas cargas são uma convenção científica.
Cargas elétricas interagem
Muito materiais adquirem carga elétrica quando atritados em outros. Nesse processo um dos materiais adquire carga elétrica positiva, e o outro, carga elétrica negativa.
Por meio de experimentos semelhantes aos descritos anteriormente com o vidro e a lã, os cientistas concluíram que cargas elétricas de sinais diferentes se atraem e que cargas elétricas de sinais iguais se repelem. Quando vidro e lã são friccionados, passam a ter cargas elétricas de sinais diferentes e, portanto, passam a se atrair. Já os dois bastões de vidro, quando adquirem cargas elétricas de mesmo sinal, passam a se repelir.
A interação elétrica obedece o princípio da ação e reação
A interação entre dois corpos portadores de cargas elétricas obedece à Terceira Lei de Newton (Princípio da ação e reação). Sobre cada um dos dois corpos atua uma força que se deve a presença do outro. As duas forças tem a mesma intensidade (mesmo módulo) e a mesma direção (mesma linha de atuação), mas diferentes sentidos.

Se os dois corpos apresentam cargas de sinais opostos, as forças tendem a fazê-los de aproximar. Por outro lado, se os dois corpos possuem carga de mesmo sinal, as forças tendem a fazê-los se afastar.
Eletrização por atrito
Diferentes materiais têm diferentes tendências à eletrização. Quando vidro de lã são atritados, dizemos que ambos materiais adquirem carga elétrica pelo processo de eletrização por atrito.
Com base em muitos experimentos similares, foi possível aos cientistas determinarem a tendência dos materiais a adquirir carga elétrica positiva ou negativa, quando atritados uns com os outros. Essa tendência pode ser expressa por meio de uma seqüência como a mostrada abaixo.
<--------- data-blogger-escaped-a="" data-blogger-escaped-adquirir="" data-blogger-escaped-aumenta="" data-blogger-escaped-carga="" data-blogger-escaped-ncia="" data-blogger-escaped-para="" data-blogger-escaped-positiva="" data-blogger-escaped-tend="" data-blogger-escaped-th="">
Vidro
seda
algodão
borracha rígida
Aumenta a tendência para adquirir carga negativa -------->
Condutores elétricos
Imagine duas esferas de metal, um pouco afastadas entre si, uma delas eletrizada com carga positiva e a outra não-eletrizada. Se um bastão de metal tocar as duas esferas simultaneamente, verifica-se que parte da carga elétrica é transferida para a outra esfera. Porém, se utilizarmos um bastão de madeira, a carga permaneceria na esfera eletrizada, e a outra não receberia nem um pouco dessa carga.


Esse experimento evidencia que o metal é o material condutor elétrico e a madeira é um material isolante elétrico.
De fato, os condutores elétricos mais conhecidos são os metais como o cobre, o ferro o alumínio, o ouro e a prata. Entre eles, o cobre, metal de aspecto marrom-avermelhado, é usado na fiação elétrica das casas. Entre os isolantes elétricos podemos citar, além da madeira, os plásticos em geral, o ar (a temperatura e pressão ambientes), as borrachas e o isopor (que na verdade, é um tipo de plástico).
A grande maioria dos metais conhecidos se encaixa em um desses dois grupos: condutor elétrico e isolantes elétrico. Há, contudo, certos materiais que não se enquadram bem em nenhuma dessas duas categorias, mas sim em um grupo intermediário, conhecidos como semi-condutores. Dois exemplos são o silício e o germânio, empregados na indústria para elaborar alguns componentes usados em aparelhos eletrônicos.
Eletrização por contato
Quando um corpo eletrizado toca um corpo eletricamente neutro (isto é, sem carga elétrica), parte de sua carga é transferida para ele, que também passa a ficar eletrizado. Esse processo é a eletrização por contato.
Corrente elétrica
Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica.
A corrente elétrica é responsável pelo funcionamento dos aparelhos elétricos; estes somente funcionam quando a corrente passa por eles.
Somente é possível a passagem de corrente por um aparelho se este pertencer a um circuito fechado.

Um circuito constituído de lâmpada, pilha e fios, quando ligados corretamente, formam um circuito fechado. Quando ligamos os aparelhos elétricos em nossa casa e eles funcionam, podemos garantir que fazem parte de um circuito fechado quando passa corrente elétrica através de seus fios.
Entendendo a corrente elétrica
Antes de definirmos corrente elétrica, vamos imaginar a seguinte situação: você está em uma estação de trem urbano ou de metrô, no qual o passageiro passa por roletas para ter acesso aos trens. Sua finalidade ali é avaliar a quantidade de pessoas que passam por minuto.
Obter essa informação é simples: basta contar quantas pessoas passam em um minuto. Por exemplo, se contou 100 pessoas, você responderá que passam 100 pessoas por minuto. Para atingir uma média melhor, você pode contar por mais tempo. Digamos que tenha contado 900 pessoas em 10 minutos.
Portanto, sua média agora será 900/10 = 90 pessoas por minuto.
Então alguém lhe pede que avalie a massa média das pessoas que passam por minuto pelas roletas. Você aceita o desafio.
Se a massa médias das pessoas no Brasil é 70 Kg (podemos ver isso ao ler placas de elevadores de prédios, que sempre consideram a massa de uma pessoa igual a 70 kg. Essas placas de advertência fixadas nas cabines afirmam: “Capacidade máxima: 10 pessoas ou 700 kg”).
Massa média
Essa idéia é similar à usada para definir a intensidade de corrente elétrica (i). Sabe-se que a carga de um elétron é igual a 1,6.10- 19 C .
Se você conseguisse contar a quantidade de elétrons (n) que atravessa uma região plana de um fio em 1 segundo poderia afirmar que a intensidade da corrente elétrica é:

Se contasse por um período qualquer, e representando a carga do elétron (1,6.10- 19 C) pela letra e, poderia afirmar:

Esta é a expressão matemática associada à intensidade da corrente elétrica.
A unidade de intensidade de corrente elétrica é o Coulomb por segundo, denominada ampère (A). A corrente elétrica pode ser contínua ou alterada.
Na corrente contínua, observada nas pilhas e baterias, o fluxo dos elétrons ocorre sempre em um único sentido.
Na corrente alternada, os elétrons alternam o sentido do seu movimento, oscilando para um lado e para o outro. É esse tipo de corrente que se estabelece ao ligarmos os aparelhos na nossa rede doméstica. A razão de a corrente ser alternada está relacionada a forma como a energia elétrica é produzida e distribuída para nossas casas.
Diferença de potencial
Ao abandonarmos um corpo a certa altura, ele sempre cai. Isso ocorre porque existe uma diferença de energia potencial entre o local em que o corpo estava e o solo.
Em uma pilha comum ocorre algo semelhante. A pilha assim como a tomada de nossa casa, a bateria do carro ou do celular, enfim, qualquer gerador de energia elétrica, é um dispositivo no qual se conseguiu estabelecer dois de seus pontos: um que precisa de elétrons e o outro que os tem sobrando.
Em uma pilha, no ponto denominado pólo negativo há elétrons sobrando, e no pólo positivo há falta de elétrons. Se ligássemos esses pontos por meio de um fio condutor, os elétrons entrariam em movimento e uma corrente surgiria no fio.

Por isso, nessa situação há energia potencial armazenada na pilha, de modo muito parecido com o que possui um objeto situado a uma altura h do chão: é só soltá-lo, que ele entra em movimento. Da mesma forma, ao ligar um fio à pilha, uma corrente surge no fio.
A unidade de tensão no Sistema Internacional é indicada pelo volt (V).
A pilha mais usada é a de 1,5 V. Uma bateria de carro fornece 12 V.
O computador trabalha com uma fonte de 5 V. As tomadas de nossa casa fornecem tensão de 110V ou 220 V, dependendo da região do País. É muito prudente observar a tensão local antes de ligar os aparelhos às tomadas. Se ligarmos aparelhos programados para funcionar a 110 V em uma tomada de 220V, eles podem queimar e até provocar acidentes graves.
Em geral, basta ajustar nos aparelhos uma chave para que essa situação se resolva; mas nem sempre essa chave existe, por isso tome cuidado!

Devido a diferença de potencial, podemos levar choques. Como o nosso corpo é bom condutor de eletricidade, se tocarmos em dois pontos que existe diferença de potencial, uma corrente atravessará o nosso corpo. Dependendo da intensidade dessa corrente e do caminho que ela percorrer no corpo um choque pode até mesmo levar à morte.

Devemos tomar muito cuidado com fios de alta tensão. A tensão nesses cabos chega a milhares de volts! Por isso, não brinque próximo a postes de energia elétrica.
E por que, você deve se perguntar, os pássaros que pousam nesses cabos não são eletrocutados?

Isso não ocorre porque suas patinhas são muito próximas uma das outras, sendo muito pequena a diferença de potencial entre elas.
Com as pessoas, a situação é diferente. Nunca toque em fios de alta tensão, pois se tocar em um cabo e, ao mesmo tempo, tocar em outro ponto do cabo ou em outro objeto, você poderá levar um choque elétrico intenso, possivelmente fatal, se houver diferença de potencial significativa entre os pontos tocados.
Resistência elétrica
Sabemos que os materiais apresentam graus de dificuldade para a passagem da corrente elétrica. Esse grau de dificuldade é denominado resistência elétrica. Mesmo os metais, que em geral são bons condutores, apresentam resistência. A unidade de medida da resistência é o ohm ().
Os dispositivos que são usados em um circuito elétrico são denominados resistores. Os resistores são usados em um circuito para aumentar ou diminuir a intensidade da corrente elétrica que o percorre.
Podemos comparara a resistência elétrica àquelas barreiras que encontramos nas pistas de atletismo para a corrida com obstáculos. Quanto mais obstáculos mais lenta é a velocidade média dos corredores. Em um circuito acontece da mesma forma: quanto mais resistência elétrica, menor é a corrente que atravessa o fio condutor.
A aplicação mais comum dos resistores é converter energia elétrica em energia térmica. Isso ocorre porque os elétrons que se movem no resistor colidem com a rede cristalina que o forma, gerando calor. Esse fenômeno é denominado efeito joule em nosso dia-a-dia: em chuveiros elétricos, ferros de passar roupa, em fogões elétricos, etc. Observem que todos esses aparelhos “fornecem calor”.

A própria lâmpada incandescente converte mais energia elétrica em energia térmica do que em energia luminosa, sendo essa última a sua grande finalidade: 85 % da energia que consome é transformada em calor. Ao contrário, as lâmpadas fluorescentes, consideradas “lâmpadas frias”, têm uma parte bem menor da energia elétrica convertida em calor e por isso são econômicas.
Primeira lei de Ohm
Observou-se experimentalmente em alguns resistores, que a corrente estabelecida em um circuito é diretamente proporcional à tensão aplicada e inversamente proporcional à resistência dos dispositivos do circuito e dos fios que os conectavam. Ou seja: quanto maior a tensão do gerador, maior a corrente e quanto maior a resistência, menor a corrente. Essa relação é expressa matematicamente por:

em que: U é a tensão
R é a resistência
i é a corrente
Vejamos um exemplo:
Uma pequena lâmpada está submetida a uma tensão de 12 V. Sabendo que a sua resistência, é de determine a corrente que percorre a lâmpada.
Sabemos que .
Como ,
Temos que:

Potência elétrica
Talvez você tenha reparado, nas etiquetas dos aparelhos ou dispositivos elétricos que compramos que existe uma etiqueta especificando: 100 (Watt), 500 W, 1000 W etc. Mas, afinal, o que significa essa informação?

Vimos em mecânica o conceito de potência: energia/tempo. A energia elétrica que é convertida nesses aparelhos para várias finalidades e usos distintos, como gerar movimento (motores), gerar calor (resistores), gerar energia luminosa (lâmpadas), dividida pelo tempo que está em uso, é a potência elétrica, que, assim como na mecânica, medimos em Watts (joules/segundo).
A potência é diretamente proporcional à tensão e à corrente.
Matematicamente, temos:

Por exemplo, num chuveiro elétrico de 2200 W, ligado à rede de 110V, podemos calcular a corrente que o percorre:

Os ímãs
O magnetismo é conhecido há cerca de 2500 anos. Em uma região chamada Magnésia, na antiga Grécia (esta região hoje faz parte da Turquia), foi encontrada uma rocha com o poder de atrair pedaços de ferro. Os antigos gregos lhe deram o nome de magnetita (um tipo de minério de ferro).

A magnetita atualmente é mais conhecida como pedra-ímã ou simplesmente ímã.
Forças magnéticas
Por meio dos experimentos, constatou-se que o imã tem a propriedade de atrair certos materiais. Essa propriedade é denominada de magnetismo.
A força magnética do imã atua sobre certos metais como o ferro, o níquel e o cobalto, isto é, sobre os materiais denominados ferromagnéticos. Nem todos os metais são ferromagnéticos. Os metais das medalhas olímpicas, por exemplo, o ouro, a prata e o cobre não são atraídos pelos imãs.
Ao colocar a folha de papel com limalha de ferro sobre o imã, nela fica representada a área de influência desse imã.

As extremidades do imã – regiões onde as forças magnéticas agem mais intensamente – são denominadas pólos. A existência desses pólos é uma das importantes características dos imãs.
O imã apresenta sempre dois pólos.
Se o quebrarmos em duas partes, cada uma delas apresentará novamente dois pólos. Portanto, não conseguiremos nunca isolar um dos pólos do imã.

Podendo se movimentar livremente, um imã se alinha com a direção geográfica Norte-Sul.
Convencionou-se que a parte do imã que aponta para o Norte geográfico da Terra seria denominada pólo Norte do ímã. Normalmente, essa parte é pintada de vermelho. A outra parte é o pólo Sul do imã.

Com esse conhecimento básico, os chineses criaram a bússola, que, desde o século XI, tem sido usada para orientar navegadores e pilotos.
Nos séculos XV e XVI, época das grandes navegações, a bússola, desempenhou papel fundamental na orientação pelos mares até então desconhecidos.
Eletroímãs
Há um tipo muito interessante de imã chamado eletroímã. É um dispositivo no qual a eletricidade percorre um fio enrolado em um pedaço de ferro e que se comporta como um imã.
Você pode construir um eletroímã em casa: Um eletroímã começa com uma pilha ou bateria (ou alguma outra fonte de energia) e um fio. O que a pilha produz são os elétrons.

Se você olhar qualquer pilha D (uma pilha de lanterna, por exemplo), dá para ver que há duas extremidades, uma marcada com um sinal de mais (+) e outra marcada com o sinal de menos (-). Os elétrons estão agrupados na extremidade negativa da pilha e, podem fluir para a extremidade positiva, com o auxílio de um fio. Se você conectar um fio diretamente entre os terminais positivo e negativo de uma pilha, três coisas irão acontecer:
  1. os elétrons irão fluir do lado negativo da pilha até o lado positivo o mais rápido que puderem;
  2. a pilha irá descarregar bem rápido (em questão de minutos). Por esse motivo, não costuma ser uma boa idéia conectar os 2 terminais de uma pilha diretamente um ao outro, normalmente, você conecta algum tipo de carga no meio do fio. Essa carga pode ser um motor, uma lâmpada, um rádio;
  3. um pequeno campo magnético é gerado no fio. É esse pequeno campo magnético que é a base de um eletroímã.

Ímã bagunça informações

Por que os cartões de crédito são desmagnetizados quando ficam próximos a aparelhos de televisão?
Atenção para os lugares onde você deixa a carteira!
Vários eletrodomésticos, como a TV, o aparelho de som e o telefone celular, podem danificar os cartões de crédito. É que as informações do cliente são gravadas magneticamente, e qualquer ímã pode interferir nessa gravação. "Um aparelho de TV ligado produz um campo magnético que bagunça as informações gravadas em cartões, fitas de vídeo, disquetes de computador ou mesmo em bilhetes do metrô, que funcionam com o mesmo princípio".
A técnica de gravação nasceu na Dinamarca no final do século passado, quando o engenheiro Valdemar Poulsen demonstrou que uma corda de piano imantada poderia guardar a voz humana. O invento, batizado de telegrafone, ganhou um prêmio na exposição de Paris de 1900, mas não fez sucesso comercialmente. Em compensação, o método desenvolvido por Poulsen foi aperfeiçoado e hoje serve para armazenar qualquer tipo de informação — de um texto digitado em computador até a sua senha bancária.
1. A tarja magnética é coberta com uma camada de partículas de óxido de ferro.
2. Para gravar uma senha qualquer, é preciso passar um eletroímã sobre ela. Isso faz com que as partículas se transformem em pequenos ímãs, que ficam alinhados, codificando os dados.
3. Se há um outro campo magnético por perto, como o de uma TV ou um alto-falante, os ímãs alinhados da tarja são atraídos outra vez e perdem o rumo. A informação se apaga.
www.sobiologia.com.br