quinta-feira, 9 de setembro de 2021

Equação do Segundo Grau exercício para 8ª série

EQUAÇÃO DO 2° GRAU

A fórmula quadrática de Sridhara (Bhaskara)

Mostraremos na sequência como o matemático Sridhara, obteve a Fórmula (conhecida como sendo) de Bhaskara, que é a fórmula geral para a resolução de equações do segundo grau. Um fato curioso é que a Fórmula de Bhaskara não foi descoberta por ele mas pelo matemático hindu Sridhara, pelo menos um século antes da publicação de Bhaskara, fato reconhecido pelo próprio Bhaskara, embora o material construído pelo pioneiro não tenha chegado até nós.
O fundamento usado para obter esta fórmula foi buscar uma forma de reduzir a equação do segundo grau a uma do primeiro grau, através da extração de raízes quadradas de ambos os membros da mesma.

Seja a equação:

ax² + bx + c = 0

onde os números reais a, b e c são os coeficientes da equação, sendo que a deve ser diferente de zero. Essa equação é também chamada de equação quadrática, pois o termo de maior grau está elevado ao quadrado

Equação Completa do segundo grau

Uma equação do segundo grau é completa, se todos os coeficientes a, b e c são diferentes de zero.

Exemplos:

1) 2 x² + 7x + 5 = 0
2) 3 x² + x + 2 = 0

o coeficiente a é diferente de zero.
Exemplos:
1) 4 x² + 6x = 0
2) 3 x² + 9 = 0
3) 2 x² = 0

Resolução de equações completas do 2° grau

Como vimos, uma equação do tipo: ax²+bx+c=0, é uma equação completa do segundo grau e para resolvê-la basta usar a fórmula quadrática (atribuída a Bhaskara), que pode ser escrita na forma:
onde Δ=b²-4ac é o discriminante da equação.Para esse discriminante Δ, há três possíveis situações:

1) Δ > 0, há duas soluções reais e diferentes

Mostraremos agora como usar a fórmula de Bhaskara para resolver a equação:

x² - 5 x + 6 = 0

1) Identificar os coeficientes: a=1, b= -5, c=6
2) Escrever o discriminante Δ = b²-4ac.
3) Calcular Δ=(-5)²-4×1×6=25-24=1
EXERCÍCIOS

1. Calcular o discriminante de cada equação e analisar as raízes em cada caso:

a) x² + 9 x + 8 = 0 (R:-1 e -8)
b) 9 x² - 24 x + 16 = 0 (R:4/3)
c) x² - 2 x + 4 = 0 (vazio)
d) 3 x² - 15 x + 12 = 0 (R: 1 e 4)
e) 10 x² + 72 x - 64 = 0 (R:-8 e 4/5)
e) 5x² - 3x - 2 = 0
f) x² - 10x + 25 = 0
g) x² - x - 20 = 0
h) x² - 3x -4 = 0
i) x² - 8x + 7 = 0



RESOLVA AS EQUAÇÕES DE 2º GRAU


1) x² - 5x + 6 = 0 _____(R:2,3)
2) x² - 8x + 12 = 0 ______(R:2,6)
3) x² + 2x - 8 = 0______ (R:2,-4)
4) x² - 5x + 8 = 0 ______(R:vazio)
5) 2x² - 8x + 8 = 0_______ (R:2,)
6) x² - 4x - 5 = 0_______ (R:-1, 5)
7) -x² + x + 12 = 0_______ (R:-3, 4)
8) -x² + 6x - 5 = 0_______ (R:1,5)
9) 6x² + x - 1 = 0______ (R:1/3 , -1/2)
10) 3x² - 7x + 2 = 0 ______(R:2, 1/3)
11) 2x² - 7x = 15 _______(R:5, -3/2)
12) 4x² + 9 = 12x______ (R:3/2)
13) x² = x + 12 ______(R:-3 , 4)
14) 2x² = -12x - 18 _____(R:-3 )
15) x² + 9 = 4x_____ (R: vazio)
16) 25x² = 20x – 4 ____(R: 2/5)
17) 2x = 15 – x² ______(R: 3 , -5)
18) x² + 3x – 6 = -8____ (R:-1 , -2)
19) x² + x – 7 = 5 ____(R: -4 , 3)
20) 4x² - x + 1 = x + 3x² ___(R: 1)
21) 3x² + 5x = -x – 9 + 2x²____ (R: -3)
22) 4 + x ( x - 4) = x _____(R: 1,4)
23) x ( x + 3) – 40 = 0 _____(R: 5, -8)
24) x² + 5x + 6 = 0 _____(R:-2,-3)
25) x² - 7x + 12 = 0 _____(R:3,4)
26) x² + 5x + 4 = 0 _____(R:-1,-4)
27) 7x² + x + 2 = 0 _____(vazio)
28) x² - 18x + 45 = 0 _____(R:3,15)
29) -x² - x + 30 = 0 _____(R:-6,5)
30) x² - 6x + 9 = 0 _____(R:3)
31) ( x + 3)² = 1_______(R:-2,-4)
32) ( x - 5)² = 1_______(R:3,7)
33)( 2x - 4)² = 0_______(R:2)
34) ( x - 3)² = -2x²_______(R:vazio)

35)Na equação 3x² - 12 = 0 as soluções são:
a)0 e 1
b)-1 e 1
c)-2 e 2 (x)
d)-3 e 3
e)0 e 4

36) x² + 3x - 28 = 0 (R: -7,4)
37) 3x² - 4x + 2 = 0 (R: vazio)
38) x² - 3 = 4x + 2 (R: -1,5)




PROBLEMAS COM EQUAÇÃO DO 2° GRAU



1) A soma de um numero com o seu quadrado é 90. Calcule esse numero. (R:9 e-10)

2) A soma do quadrado de um número com o próprio número é 12. Calcule esse numero (R: 3 e -4)

3) O quadrado menos o dobro de um número é igual a -1. Calcule esse número. (R:1)

4) A diferença entre o quadrado e o dobro de um mesmo número é 80. Calcule esse número (R:10 e -8)

5) O quadrado de um número aumentado de 25 é igual a dez vezes esse número. Calcule esse número (R: 5)

6) A soma do quadrado de um número com o seu triplo é igual a 7 vezes esse número. Calcule esse número.(R: 0 e 4)

7) O quadrado menos o quádruplo de um numero é igual a 5. Calcule esse número (R: 5 e -1)

8) O quadrado de um número é igual ao produto desse número por 3, mais 18. Qual é esse numero? (R: 6 e -3)

9) O dobro do quadrado de um número é igual ao produto desse numero por 7 menos 3. Qual é esse numero? (R:3 e ½)

10) O quadrado de um número menos o triplo do seu sucessivo é igual a 15. Qual é esse numero?(R: 6 e -3)

11) Qual o número que somado com seu quadrado resulta em 56? (R:-8 e 7)

12) Um numero ao quadrado mais o dobro desse número é igual a 35. Qual é esse número ? (R:-7 e 5)

13) O quadrado de um número menos o seu triplo é igual a 40. Qual é esse número? (R:8 e -5)

14) Calcule um número inteiro tal que três vezes o quadrado desse número menos o dobro desse número seja igual a 40. (R:4)

15) Calcule um número inteiro e positivo tal que seu quadrado menos o dobro desse número seja igual a 48. (R:8)

16) O triplo de um número menos o quadrado desse número é igual a 2. Qual é esse número? (R:1 e 2)

17) Qual é o número , cujo quadrado mais seu triplo é igual a 40? ( R: 5 , -8)

18) O quadrado de um número diminuido de 15 é igual ao seu dobro. Calcule esse número.
(R: 5 e -3)

19) Determine um número tal que seu quadrado diminuído do seu triplo é igual a 26. (R:7 e -4)

20) Se do quadrado de um número, negativo subtraimos 7, o resto será 42. Qual é esse número?
(R: -7)

21) A diferença entre o dobro do quadrado de um número positivo e o triplo desse número é 77. Calcule o número. (R: 7)

22) Determine dois números ímpares consecutivos cujo produto seja 143. (R: 11 e 13 ou -11, -13)

23) Um azulejista usou 2000 azulejos quadrados e iguais para revestir 45m² de parede. Qual é a medida do lado de cada azulejo? (R:15 cm)



RESOLUÇÃO DE EQUAÇÃO INCOMPLETAS



Resolver uma equação é determinar todas as suas soluções. Vejamos, através de exemplos, como se resolvem as equações incompletas do 2° grau

1° CASO – equações da forma ax² + c = 0, (b = 0)

Exemplos:

1) x² - 25 = 0
x² = 25
x = √25
x = 5
logo V= (+5 e -5)

2) 2x² - 18 = 0
2x² = 18
x² = 18/2
x² = 9
x = √9
x = 3
logo V= (-3 e +3)

3) 7x² - 14 = 0
7x² = 14
x² = 14/7
x² = 2
x = √2
logo V = (-√2 e +√2)

4) x²+ 25 = 0
x² = -25
x = √-25
obs: não existe nenhum número real que elevado ao quadrado seja igual a -25

EXERCÍCIOS

1) Resolva as seguintes equações do 2° grau

a) x² - 49 = 0 (R: -7 e +7)
b) x² = 1 (R: +1 e -1)
c) 2x² - 50 = 0 (R: 5 e -5)
d) 7x² - 7 = 0 (R: 1 e -1)
e) 5x² - 15 = 0 (R: √3 e -√3)
f) 21 = 7x² (R: √3 e -√3)
g) 5x² + 20 = 0 (R: vazio)
h) 7x² + 2 = 30 (R: 2 e -2 )
i) 2x² - 90 = 8 (R: 7 e -7)
j) 4x² - 27 = x² (R:3 e -3)
k) 8x² = 60 – 7x² (R: 2 e -2)
l) 3(x² - 1 ) = 24 (R: 3 e -3)
m) 2(x² - 1) = x² + 7 (R:3 e -3)
n) 5(x² - 1) = 4(x² + 1) (R:3 e -3)
o) (x – 3)(x + 4) + 8 = x (R:2 e -2)

2° CASO: Equações da forma ax² + bx = 0 ( c = 0)

Propriedade: Para que um produto seja nulo é preciso que um dos fatores seja zero .

Exemplos

1) resolver x² - 5x = 0
fatorando x ( x – 5) = 0

deixando um dos fatores nulo temos x = 0

e o outro x – 5 = 0 , passando o 5 para o outro lado do igual temos x = 5

logo V= (0 e 5)

2) resolver: 3x² - 10x = 0
fatorando: x (3x – 10) = 0

deixando um dos fatores nulo temos x = 0

Tendo também 3x – 10 = 0
3x = 10
x = 10/3

logo V= (0 e 10/3)

Observe que, nesse caso, uma das raízes é sempre zero.


EXERCÍCIOS

1) Resolva as seguintes equações do 2° grau.

a) x² - 7x = 0 (R: 0 e 7)
b) x² + 5x = 0 (R: 0 e -5)
c) 4x² - 9x = 0 (R: 0 e 9/4)
d) 3x² + 5x =0 (R: 0 e -5/3)
e) 4x² - 12x = 0 (R: 0 e 3)
f) 5x² + x = 0 (R: 0 e -1/5)
g) x² + x = 0 (R: 0 e -1)
h) 7x² - x = 0 (R: 0 e 1/7)
i) 2x² = 7x (R: 0 e 7/2)
j) 2x² = 8x (R: 0 e 4)
k) 7x² = -14x (R: 0 e -2)
l) -2x² + 10x = 0 (R: 0 e 5)

2) Resolva as seguintes equações do 2° grau

a) x² + x ( x – 6 ) = 0 (R: 0 e 3)
b) x(x + 3) = 5x (R: 0 e 2)
c) x(x – 3) -2 ( x-3) = 6 (R: 0 e 5)
d) ( x + 5)² = 25 (R: 0 e -10)
e) (x – 2)² = 4 – 9x (R: 0 e -5)
f) (x + 1) (x – 3) = -3 (R: 0 e 2)

7 comentários:

  1. me ajude a resolver essas questões: x ao quadrado+2x-8=0 e (x-3)(x+4)+8=x

    ResponderExcluir
  2. Obrigada pelos exercícios! Serão de grande ajuda a meus alunos.

    ResponderExcluir
  3. Bom demais ,estou tentando ajudar o meu neto que está no oitavo ano ,absss,e que Jesus abençoe a família

    ResponderExcluir
  4. Obrigada pelo esclarecimento me servirao de grande apoio

    ResponderExcluir
  5. Obrigada pelo esclarecimento me servirao de grande apoio

    ResponderExcluir
  6. Obrigada pelo esclarecimento me servirao de grande apoio

    ResponderExcluir
  7. Muito obrigado pela linda obra que acabas ns oferecendo

    ResponderExcluir