Circunferência é o conjunto de todos os pontos de um plano eqüidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência.
A circunferência possui características não comumente encontradas em outras figuras planas.
Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo 0 é menor ou igual que uma distância r dada.
Circunferência
A circunferência é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência.A circunferência possui características não comumente encontradas em outras figuras planas, como o fato de ser a única figura plana que pode ser rodada em torno de um ponto sem modificar sua posição aparente. É também a única figura que é simétrica em relação a um número infinito de eixos de simetria. A circunferência é importante em praticamente todas as áreas do conhecimento como nas Engenharias, Matemática, Física, Química, Biologia, Arquitetura, Astronomia, Artes e também é muito utilizado na indústria e bastante utilizada nas residências das pessoas.
Algumas definições
Raio - Raio de uma circunferência (ou de um círculo) é um segmento de reta com uma extremidade no centro da circunferência e a outra extremidade num ponto qualquer da circunferência.
Arco – é uma parte da circunferência limitada por dois pontos, que se chamam extremidades do arco.
Corda – é um segmento de infinitos pontos alinhados, cujos pontos extremos com um ponto da circunferência. Quando esse segmento passa pelo centro da circunferência, temos o que chamamos de diâmetro.
O diâmetro é sempre a corda maior: como é a corda que passa pelo centro, sua medida é igual a duas vezes a medida do raio.
Assim, para medir a maior distância entre dois pontos de uma circunferência, deve medir o diâmetro, ou seja, o seu instrumento de medida (régua, trena ou fita métrica) deve passar pelo centro da circunferência. Em alguns casos, porém, apenas uma parte da circunferência é utilizada.Tangente – é a reta que tem um único ponto comum à circunferência, este ponto é conhecido como ponto de tangência ou ponto de contato.
Secante – é a reta que intercepta a circunferência em dois pontos distintos, se essa reta intercepta a circunferência em dois pontos quaisquer, podemos dizer também que é a reta que contem uma corda.
Para simbolizar a corda que une os pontos P e Q, utilizamos a notação de segmento de reta, ou seja, corda PQ.Por outro lado, o arco também começa em P e termina em Q mas, como você pode ver, a corda e o arco são diferentes e por isso a simbologia também deve ser diferente. Para o arco, usamos PQ.
Da mesma forma que a maior corda é o diâmetro, o maior arco é aquele que tem as
extremidades em um diâmetro. Esse arco é chamado semicircunferência, e a parte do círculo correspondente é chamada semicírculo.
O Comprimento da circunferência
No exemplo abaixo, cada uma das três circunferências foi cortada no ponto marcado com uma tesourinha, e a linha do traçado de cada uma delas foi esticada.
Círculo
Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo 0 é menor ou igual que uma distância r dada. Quando a distância é nula, o círculo se reduz a um ponto. O círculo é a reunião da circunferência com o conjunto de pontos localizados dentro da mesma. É uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua volta quantos objetos circulares estão presentes: nas moedas, nos discos, a mesa de refeição...
Agora pense, o que faríamos para:* riscar no tecido o contorno de uma toalha de mesa redonda?
* desenhar um círculo no seu caderno?
* marcar o limite das escavações de um poço no chão?
Quando falamos em círculo, ninguém tem dúvida quanto ao formato dessa figura geométrica. No entanto, em geometria, costuma-se fazer uma pequena distinção entre círculo e circunferência, sobre a qual você já deve ter ouvido falar.
A superfície de uma moeda, de uma pizza ou de um disco é um círculo.
Quando riscamos no papel ou no chão apenas o contorno do círculo, este contorno é chamado circunferência. O compasso é um instrumento utilizado para desenhar circunferências.
O compasso possui duas “pernas”, uma delas tem uma ponta metálica, que deve ser assentada no papel, no local que será o centro da circunferência, a outra ponta,
com a grafite, deve ser girada para obter o traçado da circunferência.
Antes de traçar uma circunferência, devemos decidir qual será a abertura entre as pernas do compasso.
À distância entre as duas pontas do compasso define o raio da circunferência.
Utilizando uma tachinha, um barbante e um giz podem-se riscar uma circunferência no chão ou no tecido. Os operários, jardineiros e pedreiros, por exemplo, costumam usar uma corda e duas estacas.
Equação reduzida da circunferência
Uma circunferência é determinada quando conhecemos a posição do seu centro e o valor do seu raio. Imaginando no plano cartesiano uma circunferência de centro no ponto C = (a, b) e com raio R, vamos representar por P = (x, y) um ponto qualquer que pertence a essa circunferência. Que propriedade tem o ponto P?
Se P pertence à circunferência, sua distância até o centro é igual ao raio.
Como a distância do ponto C = (a, b) ao ponto P = (x, y) é igual a R, usando a fórmula da distância entre dois pontos temos:
(x - a)2 + (y - b)2 = R
Elevando ao quadrado os dois membros, a expressão obtida é a equação da circunferência de centro (a, b) e raio R.
Portanto, (x - a)² + (y - b)² = r² é a equação reduzida da circunferência e permite determinar os elementos essenciais para a construção da circunferência: as coordenadas do centro e o raio.
Observação: Quando o centro da circunferência estiver na origem (C(0,0)), a equação da circunferência será x² + y² = r² .
Exemplo:
Seja uma circunferência cuja equação é:
(x - 2) ² + (y - 3)² = 100
Verificar se a circunferência passa pela origem ,quais as coordenadas do centro e quanto vale o raio:
Pela expressão temos que: R = 10 e C(2,3)
Fazendo x=0 e y=0, temos que: (-2) ² + (-3) ² = 13
Como 13 é diferente de 100, logo a circunferência não passa pela origem.
Equação geral da circunferência
Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:Como exemplo, vamos determinar a equação geral da circunferência de centro C(2, -3) e raio r = 4.
A equação reduzida da circunferência é:
(x - 2)² +(y + 3) ² = 16
Desenvolvendo os quadrados dos binômios, temos:
Determinação do centro e do raio da circunferência, dada a equação geral
Dada a equação geral de uma circunferência, utilizamos o processo de fatoração de trinômio quadrado perfeito para transformá-la na equação reduzida e , assim, determinamos o centro e o raio da circunferência.Para tanto, a equação geral deve obedecer a duas condições:
* os coeficientes dos termos x² e y² devem ser iguais a 1;
* não deve existir o termo xy.
Então, vamos determinar o centro e o raio da circunferência cuja equação geral é
x² + y² - 6x + 2y - 6 = 0.
Observando a equação, vemos que ela obedece às duas condições. Assim:* 1º passo: agrupamos os termos em x e os termos em y e isolamos o termo independente
x² - 6x + _ + y² + 2y + _ = 6
* 2º passo: determinamos os termos que completam os quadrados perfeitos nas variáveis x e y, somando a ambos os membros as parcelas correspondentes* 3º passo: fatoramos os trinômios quadrados perfeitos
(x - 3) ² + (y + 1) ² = 16
* 4º passo: obtida a equação reduzida, determinamos o centro e o raio
Posição de um ponto em relação a uma circunferência
Em relação à circunferência de equação (x - a) ² + (y - b) ² = r², o ponto P(m, n) pode ocupar as seguintes posições:a) P é exterior à circunferência
b) P pertence à circunferência
c) P é interior à circunferência
Assim, para determinar a posição de um ponto P(m, n) em relação a uma circunferência, basta substituir as coordenadas de P na expressão (x - a) ² + (y - b) ² - r²:
* se (m - a) ² + (n - b) ² - r² > 0, então P é exterior à circunferência;
* se (m - a) ² + (n - b) ² - r² = 0, então P pertence à circunferência;
* se (m - a) ² + (n - b) ² - r² <>P é interior à circunferência.
Posição de uma reta em relação a uma circunferência
Dadas uma reta s: Ax + Bx + C = 0 e uma circunferência α de equação (x - a) ² + (y - b)² = r², vamos examinar as posições relativas entre s e α :Também podemos determinar a posição de uma reta em relação a uma circunferência calculando a distância da reta ao centro da circunferência. Assim, dadas a reta s: Ax + By + C = 0 e a circunferência α :
(x - a) ² + ( y - b ) ² = r², temos:
Assim:
Condições de tangência entre reta e circunferência
Dados uma circunferência α e um ponto P(x, y) do plano, temos:
a) se P pertence à circunferência, então existe uma única reta tangente à circunferência por P
b) se P é exterior à circunferência, então existem duas retas tangentes a ela por P
c) se P é interior à circunferência, então não existe reta tangente à circunferência passando pelo ponto P
Posições Relativas entre Ponto e Circunferência
* Externo:
d > r ;
d - r > 0
* Interno:
d <>
d - r <>
* Pertence à Circunferência:
d = r
d - r = 0
’
Posições Relativas entre Reta e Circunferência
* Tangente: A reta tem um só ponto A comum com a circunferência, e os outros pontos da reta são exteriores à circunferência. A tangente a um círculo, num ponto, é a perpendicular ao raio que tem extremidade nesse ponto.
d = r
* Secante:
A reta tem dois pontos distintos A e B comuns com a circunferência.
d <>
* Externo:
A reta não tem ponto comum com a circunferência. Todos os pontos da reta são exteriores à circunferência
d > r
Posições Relativas entre duas Circunferências
* Não se interceptam: (d = distância entre os Centros)
* Externamente: A duas circunferências não têm ponto em comum.
d > r1 + r2
* Internamente:
As duas circunferências não têm pontos em comum e os pontos de uma delas são interiores à outra.
d < |r1 - r2|
* São Tangentes:
* Externamente: As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são exteriores à outra. O ponto comum é o ponto de tangência.
d = r1 + r2
* Internamente:
As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são interiores à outra. O ponto comum é o ponto da tangência.
d = |r1 - r2|
* São Secantes:
As duas circunferências têm dois pontos distintos em comum. São denominadas circunferências SECANTES.
|r1 - r2| < alt="" src="http://www.coladaweb.com/matematica/circun_arquivos/image062.jpg" width="71" border="0" height="55">
* Caso particular: Concêntricas:
As duas circunferências são interiores e os centros das duas são coincidentes.d = 0
Conclusão
Nosso trabalho consiste em falar sobre circunferência. Nesta ação, conseguimos compreender o que é circunferência; é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência.Autoria: Daiane Fernandes
Nenhum comentário:
Postar um comentário