Pular para o conteúdo principal

Teorema de D’Alembert

O teorema de D’Alembert é uma consequência imediata do teorema do resto, que são voltados para a divisão de polinômio por binômio do tipo x – a. O teorema do resto diz que um polinômio G(x) dividido por um binômio x – a terá resto R igual a P(a), para
x = a. O matemático francês D’Alembert provou, levando em consideração o teorema citado acima, que um polinômio qualquer Q(x) será divisível por x – a, ou seja, o resto da divisão será igual à zero (R = 0) se P(a) = 0.


Esse teorema facilitou o cálculo da divisão de polinômio por binômio (x –a), dessa forma não sendo preciso resolver toda a divisão para saber se o resto é igual ou diferente de zero.

Exemplo 1
Calcule o resto da divisão (x2 + 3x – 10) : (x – 3).

Como diz o Teorema de D’Alembert, o resto (R) dessa divisão será igual a:

P(3) = R
32 + 3 * 3 – 10 = R
9 + 9 – 10 = R
18 – 10 = R
R = 8
Portanto, o resto dessa divisão será 8.

Exemplo 2
Verifique se x5 – 2x4 + x3 + x – 2 é divisível por x – 1.

Segundo D’Alembert, um polinômio é divisível por um binômio se P(a) = 0.

P(1) = (1)5 – 2*(1)4 + (1)3 + (1) – 2
P(1) = 1 – 2 + 1 + 1 – 2
P(1) = 3 – 4
P(1) = – 1

Como P(1) é diferente de zero, o polinômio não será divisível pelo binômio x – 1.

Exemplo 3
Calcule o valor de m de modo que o resto da divisão do polinômio
P(x) = x4 – mx3 + 5x2 + x – 3 por x – 2 seja 6.

Temos que, R = P(x) → R = P(2) → P(2) = 6

P(2) = 24 – m*23 + 5*22 + 2 – 3
24 – m*23 + 5*22 + 2 – 3 = 6
16 – 8m + 20 + 2 – 3 = 6
– 8m = 6 – 38 + 3
– 8m = 9 – 38
– 8m = – 29
m = 29/8


Exemplo 4
Calcule o resto da divisão do polinômio 3x3 + x2 – 6x + 7 por 2x + 1.

R = P(x) → R = P(– 1/2)

R = 3*(–1/2)3 + (–1/2)2 – 6*(–1/2) + 7
R = 3*(–1/8) + 1/4 + 3 + 7
R = –3/8 + 1/4 + 10 (mmc)
R = –3/8 + 2/8 + 80/8
R = 79/8
Por Marcos Noé
Graduado em Matemática

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de