sexta-feira, 3 de setembro de 2021

RELAÇÕES E FUNÇÕES


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com


CONCEITOS DE RELAÇÃO R DE A EM B


Considere os conjuntos;

A = { 1,2,5}
B = { 2,4}

Formemos o produto cartesiano de A por B:

A x B = { (1,2), (1,4), (2,2), (2,4), (5,2) , (5,4) }



Exemplos:

Sejam A = { 1,2,3} e  B = { 5,6}, os subconjuntos de A x B :
R1 = { (1,5),(2,6), ( 3,6)}
R2 = { (2,6), (3,5)}
R3= { (1,6) ,(2,6),(3,5),(3,6)}

são relações de A em B

EXERCÍCIOS


FUNÇÃO

Uma relação de A em B é determinada de função ou aplicação quando associa a todo elemento de A um único elemento em B

Exemplos

São funções de A em B, as relações representadas nos diagramas:





Obeserve:

-Em A, não sobra elementos, em B pode sobrar
- Em A, de cada elemento "parte"uma unica flecha
- Em B, um elemento pode receber mais de uma flecha

Não são funçoes de A em B, as representadas no diagramas:


Exercícios

1) Indique os diagramas que representam uma função de E em F:










DOMÍNIO CONTRADOMÍNIO E CONJUNTO IMAGEM DE UMA FUNÇÃO

Seja f uma função de A em B.



f = { (1,2),(2,4),(3,6)}

O conjunto A é o dominio da função (conjuntode partida)
No exemplo temos:
domínio = { 1,2,3}

O conjunto B é o contradominio da funbção (conjunto de chegada)
No exemplo, temos:
contradominio = { 2,3,4,5,6,7}

A imagem da função é formadapor todos os elementos de B que ficam associados a elemntos de A (elementos de B que rebem flechas )
No exemplo temos :

imagem = { 2,4,6}

O conjunto imagem é um subconjunto do contradomínio.



NOTAÇÃO DE FUNÇÃO

Considere a função f definida de R em R, tal que y = 2x + 1.

Observ e, por exemplo, que:

Para x=3, temos y = 2 . 3+1 = 7

para x=4, temos y = 2 . 4 +1= 9

para x = 5, temos y = 2 . 5 +1 = 11


Dizemos que:

7 é a imagem de 3 pela função f.  [Escreveos f(3) = 7]

9 é a imagem de 4 pela fução f  [escrevemos f(4) = 9]

11 é a imagem de 5 pela função f  [ escrevemos f(5) = 11]

Então:
Em vez de escrever y = 2x + 1, podemos escrever f(x) = 2x + 1

Onde:
x --- reprsenta um elelmento genérico do domínio da função
f(x) ---- representa o valor da função para o x considerado.

Nota:

Para definir uma função, é necessário especificar o seu domínio e o seu contra-dominio. Neste livro estudaremos as funções definidas de R em R


EXERCÍCIOS RESOLVIDOS

1) Dada a função definida por:






2) Dada a função definida por:











EXERCÍCIOS








EXERCÍCIOS COMPLEMENTARES

1) Entre as relações abaixo dadas por diagrama, quais são as funções de G em H







jmpmat24.blogspot.com.br

3 comentários:

  1. Olá.
    Qual ano se inicia o estudo sobre ambos os assuntos?

    ResponderExcluir
    Respostas
    1. Em geral é no 1 Ano do Ensino Médio. Conforme descrito na BNCC

      Excluir
  2. Oi Pessoal meu nome é David, Faço o curso de Licenciatura em Matemática No IFSP, Alguém Poderia me indicar Planos de aula de matemática antes da BNCC?
    preciso fazer um trabalho de comparativo, se fosse do ensino médio melhor caso seja de qualquer fase do ensino Básico vai ajudar!!

    ResponderExcluir