quarta-feira, 4 de dezembro de 2019

Jogos no Ensino de Matemática


fdojogos.gif
O trabalho com jogos busca criar condições para que todos os alunos possam descobrir ou redescobrir que é possível aprender e conhecer, e, para surpresa de muitos, mesmo as atividades mais formais podem dar prazer, despertar interesse e prender a atenção.
Para um trabalho sistemático com jogos é necessário que os mesmos sejam escolhidos e trabalhados com o intuito de fazer o aluno ultrapassar a fase da mera tentativa e erro, ou de jogar pela diversão apenas. Por isso, é essencial a escolha de uma metodologia de trabalho que permita a exploração do potencial dos jogos no desenvolvimento de competências e habilidades, como cálculo mental, raciocínio lógico e intuitivo, o que pode ser feito por meio da metodologia de resolução de problemas.
Desenvolvendo a capacidade de resolver problemas, o aluno consegue compreender um problema, estando apto a arquitetar um plano, executá-lo e desenvolver a avaliação crítica.
Leia mais sobre a Utilização de Jogos no Ensino de Matemática.
Atualmente as pesquisas com Jogos no Ensino de Matemática são realizadas pela professora Aparecida Francisco da Silva, do Departamento de Matemática. A professora Hélia Matiko Yano Kodama, ex-docente do Departamento de Matemática, também teve grande colaboração para o desenvolvimento do projeto.
No menu abaixo, você terá acesso à lista de todos os jogos que já foram estudados e aplicados em sala de aula. Eles foram organizados conforme a divisão do Ensino Fundamental de nove anos e Ensino Médio.
Dicas de confecção dos tabuleiros
A maioria dos nossos tabuleiros foram confeccionados com material emborrachado E.V.A (Edil Vinil Acetato) que é um material maleável, opaco, atóxico e que se apresenta em cores bonitas e vibrantes, além de ser um material barato e de fácil aquisição. Também são confeccionados jogos de tabuleiros em madeira.
Para os marcadores são usados tampinhas de garrafas, peças de madeira ou peças produzidas com o próprio E.V.A.
jogo_capa.png

Solidos geométricos

Histograma

Distribuição de frequências
A distribuição de frequências é um agrupamento de dados em classes, de tal forma que contabilizamos o número de ocorrências em cada classe. O número de ocorrências de uma determinada classe recebe o nome de frequência absoluta. O objetivo é apresentar os dados de uma maneira mais concisa e que nos permita extrair informação sobre seu comportamento. A seguir, apresentamos algumas definições necessárias à construção da distribuição de frequências.
  • Frequência absoluta i)É o número de observações correspondente a cada classe. A frequência absoluta é, geralmente, chamada apenas de frequência.
  • Frequência relativa (ƒri)É o quociente entre a frequência absoluta da classe correspondente e a soma das frequências (total observado), isto é, $ \displaystyle f_{ri}=\frac{f_i}{\sum_{j}f_j} $ onde n representa o número total de observações.
  • Frequência percentual (pi)É obtida multiplicando a frequência relativa por 100%.
  • Frequência acumulada: É o total acumulado (soma) de todas as classes anteriores até a classe atual. Pode ser: frequência acumulada absoluta (Fi), frequência acumulada relativa (Fri), ou frequência acumulada percentual (Pi).

Distribuição de frequência pontual: dados discretos
A construção de uma tabela de distribuição de frequência pontual é equivalente à construção de uma tabela simples, onde se listam os diferentes valores observados da variável com suas frequências absolutas, denotadas por (ƒi) (o índice i corresponde ao número de linhas da Tabela) como é mostrado na Tabela abaixo. Utilizamos a distribuição de frequência pontual quando se trabalha com dados discretos. Um gráfico utilizado para representar este tipo de distribuição de frequência é o Gráfico de Barras.
Exemplo 1.6.1: Considere os dados do Exemplo 1.3.3. Construa a distribuição de frequências para este conjunto de dados e o gráfico de barras.

Número de pessoas com diabetesFrequência(ƒi)
Frequência relativa (ƒri) Frequência percentualFrequência acumulada
710,0555
820,11015
950,252540
1080,44080
1130,151595
1210,055100


Para entender como executar essa função do Software Action, você pode consultar o manual do usuário

Distribuição de frequência em intervalos de classes: Dados contínuos
Para dados quantitativos contínuos, geralmente resultantes de medições de características da qualidade de peças ou produtos, dividimos a faixa de variação dos dados em intervalos de classes. O menor valor da classe é denominado limite inferior (li) e o maior valor da classe é denominado limite superior (Li).
O intervalo ou classe pode ser representado das seguintes maneiras:
1. (li)$ \vdash $(Li), onde o limite inferior da classe é incluído na contagem da frequência absoluta, mas o superior não;
2. (li)$ \dashv $(Li)
 , onde o limite superior da classe é incluido na contagem, mas o inferior não.
Podemos escolher qualquer uma destas opções, mas é importante que deixemos claro no texto ou na tabela qual delas está sendo usada. Embora não seja necessário, os intervalos são frequentemente construídos de modo que todos tenham larguras iguais, o que facilita as comparações entre as classes.
Na tabela de distribuição de frequência, acrescentamos uma coluna com os pontos médios de cada intervalo de classe, denotada por xi. Esta é definida como a média dos limites da classe $ \displaystyle x_i=\frac{l_i+L_i}{2} $. Estes valores são utilizados na construção de gráficos.
Algumas indicações na construção de distribuição de frequências são:
  • Na medida do possível, as classes deverão ter amplitudes iguais.
  • Escolher os limites dos intervalos entre duas possíveis observações.
  • O número de intervalos não deve ultrapassar 20.
  • Escolher limites que facilitem o agrupamento.
  • Marcar os pontos médios dos intervalos.
  • Ao construir o histograma, cada retângulo deverá ter área proporcional à frequência relativa (ou à frequência absoluta, o que dá no mesmo) correspondente.

Histograma
Histograma é uma representação gráfica (um gráfico de barras verticais ou barras horizontais) da distribuição de frequências de um conjunto de dados quantitativos contínuos. O histograma pode ser um gráfico por valores absolutos ou frequência relativa ou densidade. No caso de densidade, a frequência relativa do intervalo i, (fri), é representada pela área de um retângulo que é colocado acima do ponto médio da classe  i. Consequentemente, a área total do histograma (igual a soma das áreas de todos os retângulos) será igual a 1. Assim, ao construir o histograma, cada retângulo deverá ter área proporcional à frequência relativa (ou à frequência absoluta, o que é indiferente) correspondente. No caso em que os intervalos são de tamanhos (amplitudes) iguais, as alturas dos retângulos serão iguais às frequências relativas (ou iguais às frequências absolutas) dos intervalos correspondentes.
Exemplo 1.6.2: Considerando os dados do Exemplo 1.3.4, monte a distribuição de frequências e construa o histograma correspondente.
Como temos dados quantitativos contínuos, para construir a distribuição de frequências, vamos separar os dados em classes. Dividimos os dados em 8 classes de tamanhos iguais. A distribuição de frequências então é a seguinte
ClasseFrequênciaFreq. RelativaPorcentagemPorc. AcumuladaDensidadesPonto médio
[4,2;4,4)120,06660,34,3
[4,4;4,6)160,088140,44,5
[4,6;4,8)310,1515,529,50,7754,7
[4,8;5,0)660,333362,51,654,9
[5,0;5,2)350,1717,5800,8755,1
[5,2;5,4)250,1212,592,50,6255,3
[5,4;5,6)110,065,5980,2755,5
[5,6;5,8)40,02  100 0,099 5,7
E então, construímos o histograma correspondente. Podemos utilizar o software Action para resolver este problema.

Para entender como executar essa função do Software Action, você pode consultar o manual do usuário.

Exemplo 1.6.3: Considerando os dados do Exemplo 1.3.4, construa o histograma de densidades correspondente
Para construir o histograma de densidades, basta que os retângulos tenham altura do tamanho da densidade de cada classe e largura do tamanho da classe. Neste caso, o histograma ficaria da seguinte forma:
 fonte:www.portalaction.com.br

Sistemas de Equações

Professor de Matemática no Colégio Estadual Dinah Gonçalves
E Biologia na rede privada de Salvador-Bahia
Professor Antonio Carlos carneiro Barroso
email accbarroso@hotmail.com

Sistemas de Equações

Por Marcos Noé


Sistema linear
Os sistemas de equações consistem em ferramentas importantes na Matemática, eles são utilizados para determinar os valores de x e y nas equações com duas variáveis. A resolução dos sistemas consiste em estabelecer uma relação entre as equações e aplicar técnicas de resolução. Os métodos usados na resolução de um sistema são: substituição e adição. Exemplos de sistemas de equações:
Método da Substituição

O método da substituição consiste em trabalhar qualquer equação do sistema de forma a isolar uma das incógnitas, substituindo o valor isolado na outra equação. Observe passo a passo a resolução do sistema a seguir:
Nesse caso, vamos escolher a 2º equação e isolar a incógnita x.

x – y = –3
x = –3 + y

Agora, substituímos o valor de x por –3 + y na 1º equação.

2x + 3y = 19
2*(–3 + y) + 3y = 19
–6 + 2y + 3y = 19
2y + 3y = 19 + 6
5y = 25
y = 5

Para finalizar, calculamos o valor de x utilizando a seguinte equação:

x = –3 + y
x = –3 + 5
x = 2

Portanto, a solução do sistema é x = 2 e y = 5, isto é, o par ordenado (2,5)



Método da Adição

O método da adição deve ser utilizado nos sistemas em que existe a oportunidade de zerar uma das incógnitas. Observe a resolução do sistema a seguir:
1º passo: somamos as equações, eliminando uma das incógnitas e determinando o valor da outra incógnita.
Calculado o valor de x, basta escolher uma das equações e substituir o valor de x por 11.

x + y = 10
y = 10 – x
y = 10 – 11
y = –1

A solução do sistema é o par ordenado (11, –1).