sexta-feira, 20 de dezembro de 2019

Função do 2º Grau.

 A função do 2º grau, também denominada função quadrática, é definida pela expressão do tipo:
y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e

Exemplos:

a) y=x²+3x+2 ( a=1; b=3; c=2 )
b) y=x² ( a=1; b=0; c=0 )
c) y=x²-4 ( a=1; b=0; c=-4 )
Gráfico de uma função do 2º grau:

O gráfico de uma função quadrática é uma parábola

Podemos visualizar uma parábola em um parque de diversões, simplesmente olhando para a montanha russa.
Sua representação gráfica é dada em torno de eixos:

Representação gráfica

Exemplo:

Construa o gráfico da função y=x²:

[Sol] Como na função do 1º grau, basta atribuir valores reais para x, obtemos seus valores correspondentes para y.
Notem que os pontos: A e A`, B e B`, C e C` são simétricos (estão a mesma distância do eixo de simetria). O ponto V representa o vértice da parábola, é a partir dele que determinamos todos os outros pontos.

Coordenadas do vértice

A coordenada x do vértice da parábola pode ser
determinada por
Exemplo: Determine as coordenada do vértice da parábola y=x²-4x+3
Temos: a=1, b=-4 e c=3
Logo, a coordenada x será igual a 2, mas e a coordenada y?
Simples: Vamos substituir o valor obtido da coordenada x e determinar o valor da coordenada y.
Assim, para determinarmos a coordenada y da parábola
y=x²-4x+3, devemos substituir o valor de x por 2.
y = (2)²-4.(2)+3 = 4-8+3=-1
Logo, as coordenadas do vértice serão V=(2,-1)
Portanto, para determinarmos as coordenadas do vértice de uma parábola, achamos o valor da coordenada x (através de x=-b/2a) e substituindo este valor na função, achamos a coordenada y!!!

Raízes (ou zeros) da função do 2º grau

Denominam-se raízes da função do 2º grau os valores de x para os quais ela se anula.

y=f(x)=0

Exemplo: na função y=x²-4x+3, que acima acabamos de determinar as coordenadas de seus vértices, as raízes da função serão x=1 e x`=3.
Vejamos o gráfico:
Notem que quando x=1 e x`=3, a parábola intercepta ("corta") o eixo x.

Como determinar a raiz ou zero da função do 2º grau?

Simplesmente aplicando a resolução de equações do 2º grau, já vista na seção anterior.
Exemplo: determine a raiz da função y=x²+5x+6:
Fazendo y=f(x)=0, temos x²+5x+6=0
Agora basta resolver a equação aplicando a fórmula de Bháskara.
x²+5x+6=0
Acharemos que x = -2 e x` = -3.

Concavidade da parábola

Explicarei esta parte com um simples desenho.
Os desenhos até que ficaram bonitinhos, mas isso não importa neste momento. O que nos importa agora é que quando a>0, a concavidade da parábola está voltada para cima (carinha feliz) e quando a<0, a parábola está voltada para baixo (carinha triste).

Exemplos:

y = f(x) = x² - 4

a = 1 >0

y = f(x) = -x² + 4

a = -1 < 0

[Nota]

Quando a concavidade está voltada para cima (a>0), o vértice representa o valor mínimo da função. Quando a concavidade está voltada para baixo (a<0), o vértice representa o valor máximo.

Quando o discriminante é igual a zero

Quando o valor de o vértice a parábola encontra-se no eixo x. A coordenada y será igual a zero.
Exemplo: y=f(x)=x²+2x+1
x²+2x+1=0
x=x`=-b/2a=-1
As coordenadas do vértice serão V=(-1,0)

Gráfico:

Quando o discrimintante é maior que zero

Quando o valor de , a parábola intercepta o eixo x em dois pontos. (São as raízes ou zeros da função vistos anteriormente).
Exemplo: y = f(x) = x²-4x+3
x²-4x+3=0

x=1, x`=3

Gráfico:

Quando o discriminante é menor que zero

Quando o valor de a parábola não intercepta o eixo x. Não há raízes ou zeros da função.
Exemplo: y = f(x) = x²-x+2
x²-x+2=0

Gráfico

Resumindo

Esboçando o gráfico

Para finalizarmos (ufa!), vamos desenhar o gráfico da função
y=-x²-4x-3
1ª etapa: Raízes ou zeros da função
-x²-4x-3=0
Aplicando a fórmula de Bháskara
x=-1, x`=-3
2ª etapa: Coordenadas do vértice
Coordenada x (=-b/2a): -(-4)/2.(-1)=-2
Coordenada y: Basta substituir o valor de x obtido na função
y = -x²-4x-3 = -(-2)²-4.(-2)-3 = -4+8-3 = 1
Portanto, V=(-2,1)
3ª etapa: Concavidade da parábola
y=-x²-4x-3
Como a=-1<0, a concavidade estará voltada para baixo
Feito isso, vamos esboçar o gráfico:
Fonte: www.exatas.hpg.ig.com.br

Equação do 2º Grau


Denomina-se equação do segundo grau, toda a equação do tipo ax²+bx+c, com coeficientes numéricos a.b e c com .
Exemplos:

Classificação

- Incompletas: Se um dos coeficientes ( b ou c ) for nulo, temos uma equação do 2º grau incompleta.
1º caso: b=0

Considere a equação do 2º grau imcompleta

x²-9=0 » x²=9 » x= » x=
2º caso: c=0
Considere a equação do 2º grau imcompleta:
x²-9x=0 » Basta fatorar o fator comum x
x(x-9)=0 » x=0,9
3º caso: b=c=0
2x²=0 » x=0
Resolução de equações do 2º grau:
A resolução de equações do 2º grau incompletas já foi explicada acima, vamos agora resolver equações do 2º grau completas, ou seja, do tipo ax²+bx+c=0 com a, b e c diferentes de zero.
- Uma equação do 2º grau pode ter até 2 raízes reais, que podem ser determinadas pela fórmula de Bháskara.
Como Bháskara chegou até a fórmula de resolução de equações do 2º grau?
Considerando a equação: ax²+bx+c=0, vamos determinar a fórmula de Bháskara:
Multiplicamos os dois membros por 4a:
4a²x²+4abx+4ac=0
4a²x²+4abx=-4ac
Somamos b² aos dois membros:
4a²x²+4abx+b²=b²-4ac
Fatoramos o lado esquedo e chamamos de (delta) b²-4ac:
(2ax+b)²=
2ax+b=
2ax=-b
Logo:
ou

Fórmula de Bháskara


Utilizando a fórmula de Bháskara, vamos resolver alguns exercícios:
1) 3x²-7x+2=0
a=3, b=-7 e c=2
= (-7)²-4.3.2 = 49-24 = 25
Substituindo na fórmula:


Logo, o conjunto verdade ou solução da equação é:
2) -x²+4x-4=0
a=-1, b=4 e c=-4
= 4²-4.-1.-4 = 16-16 = 0
Sustituindo na fórmual de Bháskara:
» x=2

- Neste caso, tivemos uma equação do 2º grau com duas raízes reais e iguais. ( )
3) 5x²-6x+5=0
a=5 b=-6 c=5
a=5 b=-6 c=5
= (-6)²-4.5.5 = 36-100 = -64
Note que <0 e não existe raiz quadrada de um número negativo. Assim, a equação não possui nenhuma raiz real.
Logo: » vazio

Propriedades

Relações entre coeficientes e raízes

Vamos provar as relações descritas acima:
Dado a equação ax²+bx+c=0, com e , suas raízes são:
A soma das raízes será:
Logo, a soma das raízes de uma equação do 2º grau é dada por:

O produto das raízes será:


Logo, o produto das raízes de uma equação do 2º grau é dada por:

Podemos através da equação ax²+bx+c=0, dividir por a.
Obtendo:
Substituindo por
Obtendo a Soma e Produto de uma equação do 2º grau:
x² - Sx + P = 0
Exemplos:
1) Determine a soma e o produto das seguintes equações:
a) x² - 4x + 3=0
Sol] Sendo a=1, b=-4 e c=3:

b) 2x² - 6x -8 =0
Sendo a=2, b=-6 e c=-8

c) 4-x² = 0
Sendo a=-1, b=0 e c=4:

Fonte: www.exatas.hpg.ig.com.br




Soma e Produto

Na resolução de uma equação do 2º grau temos três possibilidades de resultados, podemos encontrar duas raízes reais diferentes, duas raízes reais iguais ou nenhuma raiz real.

Quando existir raiz real na resolução de equações do 2º grau, podemos fazer relações entre essas raízes, como: soma (x’ + x”) e produto (x’ . x”).

Para provarmos a soma e o produto de duas raízes reais de uma equação do 2º grau devemos partir da sua forma geral:

ax2 + bx + c = 0
Dessa forma geral, podemos encontrar duas raízes reais x’ e x”, utilizando Bháskara.


SOMA
Somando as duas raízes:
x’ + x”



- b - √∆ - b + √∆ +√∆ e -√∆ cancelam, pois sua soma será zero.
2a

-2b :2
2a :2

-b
a

Portanto, somar as duas raízes de uma equação do segundo grau é o mesmo que:
x’ + x” = -b
a

PRODUTO
Multiplicando as duas raízes:
x’ . x”



Portanto, o produto das duas raízes de uma equação do segundo grau é o mesmo que:
x’ . x” = c
a

Além de utilizarmos a fórmula de Bháskara para encontrarmos o valor de x’ e x”, podemos utilizar o produto e a soma das raízes, veja como:

Dada a equação x2 – 7x + 10 = 0. Para encontrar a soma e o produto de suas raízes não é necessário que saibamos qual é o valor delas, mas devemos retirar da equação os seus coeficientes.
a = 1
b = - 7
c = 10



Chegamos a duas conclusões: a soma dessas raízes será 7 e o produto delas será 10. Por tentativas podemos encontrar números que multiplicados resultem em 10.
5 . 2 = 10

(-5) . (-2) = 10

1 . 10 = 10

(-1) . (-10) = 10

Desses produtos deve-se escolher aquele que se somarmos os seus fatores encontraremos como resultado 7.
5 + 2 = 7

Portanto, x’ = 5 e x” = 2.

Geométria Espacial

plano de curso de biologia do 1º ano

Apostila de Racionalização de Radicais

PA e PG

Grafico da Função quadrática

Ponto minimo e máximo da função de 2º grau

Exercicío de equação de 2º grau