sábado, 30 de novembro de 2019

Conjunto

Números reais

O conjunto R
O conjunto de números reais é simbolizado pela letra R. Todo número inteiro ou decimal é considerado real.

Estrutura de R

Propriedades da adição

Associativa: (x + y) + z = x + (y + z)
Comutativa: x + y = y + x
Elemento neutro: x + 0 = 0 + x = x
Simétrico Aditivo ou aposto: x + (-x) = (-x) + x = 0

Propriedades de multiplicação

Associativa: (x. y) . z = x . (y. z) Comutativa: x . y = y. x
Elemento neutro: x . 1 = 1 . x = x
Simétrico multiplicativo ou inverso: x . x-1 = x-1 . x = 1

Propriedade distributiva da multiplicação em relação á adição

x . (y + z) = xy + xz

Propriedades da Relação de ordem

Reflexiva: x ≤ x
Anti-simétrica: x ≤ y e y ≤ x ⇒ x = y Transitiva: x ≤ y e y ≤ z ⇒ x ≤ z
Tricotomia ou ordem total: x < y ou x = y ou x > y
Compatibilidade com a adição: x ≤ y ⇒ x + z ≤ y + z
Compatibilidade com a multiplicação:

z > 0 logo, x ≤ y ⇒ x . z ≤ y . z
z < 0 logo, x ≤ z ⇒ x . z ≥ y . z



Valor absoluto

Considere . Sendo assim, o módulo de x (valor absoluto de x), é um número real positivo, representado por |x|. Este número é determinado desta maneira:

x ≥ 0 ⇒ |x| = x

x ≥ 0 ⇒ |x| = - x

Funções

Funções

Dados dois conjuntos A e B não vazios , chama-se função (ou aplicação) de A em B, representada por
f : A ® B ; y = f(x) , a qualquer relação binária que associa a cada elemento de A ,
um único elemento de B .

Portanto, para que uma relação de A em B seja uma função , exige-se que a cada x Î A esteja associado um único y Î B , podendo entretanto existir y Î B que não esteja associado a nenhum elemento pertencente ao conjunto A.
Obs : na notação y = f(x) , entendemos que y é imagem de x pela função f, ou seja:
y está associado a x através da função f.
Exemplos:
f(x) = 4x+3 ; então f(2) = 4.2 + 3 = 11 e portanto , 11 é imagem de 2 pela função f ;
f(5) = 4.5 + 3 = 23 , portanto 23 é imagem de 5 pela função f , f(0) = 4.0 + 3 = 3, etc.
Para definir uma função , necessitamos de dois conjuntos (Domínio e Contradomínio ) e de uma fórmula ou uma lei que relacione cada elemento do domínio a um e somente um elemento do contradomínio .
Quando D(f) (domínio) Ì R e CD(f)(contradomínio) Ì R , sendo R o conjunto dos números reais , dizemos que a função f é uma função real de variável real . Na prática , costumamos considerar uma função real de variável real como sendo apenas a lei y = f(x) que a define , sendo o conjunto dos valores possíveis para x , chamado de domínio e o conjunto dos valores possíveis para y , chamado de conjunto imagem da função . Assim, por exemplo, para a função definida por y = 1/x , temos que o seu domínio é D(f) = R* , ou seja o conjunto dos reais diferentes de zero (lembre-se que não existe divisão por zero) , e o seu conjunto imagem é também R* , já que se y = 1/x , então x = 1/y e portanto y também não pode ser zero.

Nota: o símbolo Ì significa “contido em”.
Dada uma função f : A ® B definida por y = f(x),
podemos representar os pares ordenados (x,y)
Î f onde x Î A e y Î B ,num sistema de coordenadas cartesianas .
O gráfico obtido será o gráfico da função f .

Assim , por exemplo , sendo dado o gráfico cartesiano de uma função f , podemos dizer que:
a ) a projeção da curva sobre o eixo dos x , nos dá o domínio da função .

b ) a projeção da curva sobre o eixo dos y , nos dá o conjunto imagem da função .

c ) toda reta vertical que passa por um ponto do domínio da função , intercepta o gráfico da função em no máximo um ponto .
Veja a figura abaixo, relativa aos ítens 1, 2 e 3 acima:
2 -Tipos de funções
2.1 - Função sobrejetora
É aquela cujo conjunto imagem é igual ao contradomínio .
Exemplo:
2.2 - Função injetora
Uma função y = f(x) é injetora quando elementos distintos do seu domínio , possuem imagens distintas,
isto é:
x1 ¹ x2 Þ f(x1) ¹ f(x2) .
Exemplo:
2.3 - Função bijetora
Uma função é dita bijetora , quando é ao mesmo tempo , injetora e sobrejetora .
Exemplo:
Exercícios resolvidos:
1 - Considere três funções f, g e h, tais que:
A função f atribui a cada pessoa do mundo, a sua idade.
A função g atribui a cada país, a sua capital
A função h atribui a cada número natural, o seu dobro.
Podemos afirmar que, das funções dadas, são injetoras:
a) f, g e h
b) f e h
c) g e h
d) apenas h
e) nenhuma delas
Solução:
Sabemos que numa função injetora, elementos distintos do domínio, possuem imagens distintas, ou seja:
x1
¹ x2 Þ f(x1) ¹ f(x2) .
Logo, podemos concluir que:

f não é injetora, pois duas pessoas distintas podem ter a mesma idade.
g é injetora, pois não existem dois países distintos com a mesma capital.
h é injetora, pois dois números naturais distintos, possuem os seus dobros também distintos.
Assim é que concluímos que a alternativa correta é a de letra C.
2 - Seja f uma função definida em R - conjunto dos números reais - tal que
f(x - 5) = 4x. Nestas condições, pede-se determinar f(x + 5).
Solução:
Vamos fazer uma mudança de variável em f(x - 5) = 4x, da seguinte forma:
x - 5 = u
\ x = u + 5

Substituindo agora (x - 5) pela nova variável u e x por (u + 5), vem:
f(u) = 4(u + 5) \ f(u) = 4u + 20
Ora, se f(u) = 4u + 20, teremos:
f(x + 5) = 4(x+5) + 20 \ f(x+5) = 4x + 40

3 – UEFS 2005-1 ) Sabendo-se que a função real f(x) = ax + b é tal que f(2x2 + 1) = - 2x2 + 2,
para todo x
Î R, pode-se afirmar que b/a é igual a
a) 2
b) 3/2
c) 1/2
d) -1/3
e) -3
Solução:

Ora, se f(x) = ax + b, então f(2x2 + 1) = a(2x2 + 1) + b
Como f(2x2 + 1) = - 2x2 + 2, vem, igualando:

a(2x2 + 1) + b = - 2x2 + 2
Efetuando o produto indicado no primeiro membro, fica:
2ax2 + a + b = -2x2 + 2

Então, poderemos escrever:
2a = -2 \ a = -2 /2 = -1
E, também,
a + b = 2 ; como a = -1, vem substituindo: (-1) + b = 2 \ b = 2 + 1 = 3

Logo, o valor procurado a/b será a/b = -1 / 3 , o que nos leva tranquilamente à alternativa D.
Agora resolva este:A função f em R é tal que f(2x) = 3x + 1. Determine 2.f(3x + 1).
Resp: 9x + 5
3 - Paridade das funções
3.1 - Função par
A função y = f(x) é par, quando " x Î D(f) , f(- x ) = f(x) , ou seja, para todo elemento do seu domínio,
f( x ) = f ( - x ). Portanto , numa função par, elementos simétricos possuem a mesma imagem. Uma conseqüência desse fato é que os gráficos cartesiano das funções pares, são curvas simétricas em relação ao eixo dos y ou eixo das ordenadas.
O símbolo
" , lê-se “qualquer que seja”.
Exemplo:
y = x4 + 1 é uma função par, pois f(x) = f(-x), para todo x.
Por exemplo, f(2) = 24 + 1 = 17 e f(- 2) = (-2)4 + 1 = 17
O gráfico abaixo, é de uma função par.
4.2 - Função ímpar
A função y = f(x) é ímpar , quando " x Î D(f) , f( - x ) = - f (x) , ou seja, para todo elemento do seu domínio, f( - x) = - f( x ). Portanto, numa função ímpar, elementos simétricos possuem imagens simétricas. Uma conseqüência desse fato é que os gráficos cartesianos das funções ímpares, são curvas simétricas em relação ao ponto (0,0), origem do sistema de eixos cartesianos.
Exemplo:
y = x3 é uma função ímpar pois para todo x, teremos f(- x) = - f(x).
Por exemplo, f( - 2) = (- 2)3 = - 8 e - f( x) = - ( 23 ) = - 8.
O gráfico abaixo é de uma função ímpar:
Nota: se uma função y = f(x) não é par nem ímpar, diz-se que ela não possui paridade.
Exemplo:

O gráfico abaixo, representa uma função que não possui paridade, pois a curva não é simétrica em relação ao eixo dos x e, não é simétrica em relação à origem.

O governo de Itamar Franco

Professor de Matemática no Colégio Estadual Dinah Gonçalves
E Biologia na rede privada de Salvador-Bahia        www.youtube.com/accbarroso1
Professor Antonio Carlos carneiro Barroso
email accbarroso@hotmail.com
Extraído de http://www.alunosonline.com.br

O governo de Itamar Franco



Itamar Franco, "pai" do Plano Real, que estabilizou a economia brasileira.
No ano de 1990, iniciava-se uma nova fase na política brasileira: a retomada da Democracia. Em meio a uma grande crise econômica, Fernando Collor de Melo foi eleito presidente pelo voto direto. Propagando uma postura renovadora, Collor foi inserido num esquema de corrupção, organizado pelo tesoureiro de sua campanha, Paulo César Farias. Foi submetido a julgamento, e foi condenado, tendo seu mandato cassado e seus direitos políticos suspensos por oito anos. Seu vice, Itamar Franco, assumiu.

A principal medida adotada no governo Itamar foi a criação de um plano para barrar o crescimento da inflação: o Plano Real. Idealizado e organizado pelo Ministro da Fazenda (e posteriormente, Presidente da República) Fernando Henrique Cardoso, o Plano Real obteve êxito, reduzindo a inflação de 50% para 4%, em um mês. No dia 21 de abril de 1993, o Presidente Itamar Franco convocou um plebiscito para escolher a nova forma de governo: se manteria o presidencialismo e a república, ou se retornaria à monarquia e ao parlamentarismo. O regime republicano e presidencialista foi escolhido por uma maioria esmagadora dos votos.

Um fato curioso, acontecido no governo Itamar, foi sua sugestão à fábrica alemã Volkswagen, a retomar a fabricação do Fusca, carro muito popular nas décadas de 60 e 70, no Brasil. Itamar visava aquecer a venda de automóveis, tornando-os mais acessíveis aos brasileiros. A fábrica havia parado de fabricar o Fusca em 1978 e, a pedido do presidente, retomou sua fabricação (que cessou em 1996). O carro, apelidado de Fusca do Itamar, não atendeu às necessidades do povo, mas a ideia de popularização dos veículos foi adotada por outras fábricas.

O governo de Itamar foi curto (cerca de dois anos), mas foi o suficiente para levantar a economia nacional e, consequentemente, o orgulho dos brasileiros, ferido nos anos de chumbo da ditadura e destroçado no governo corrupto de Collor. Itamar alcançou índices tão altos de popularidade e aprovação, que seu apoio foi imprescindível para a eleição de seu Ministro e sucessor, Fernando Henrique Cardoso, nas eleições presidenciais de 1994.