sábado, 4 de janeiro de 2020

Equação de 2º grau





Equação do Segundo Grau

Chamamos de equação do 2º grau as equações do tipo:

Equação Segundo Grau

onde a, b e c são números conhecidos com a 0.

Exemplos:

1º) 2x2 – 3x + 5 = 0 (a = 2, b = –3 e c = 5)

2º) 5x2 + 7x = 0 (a = 5, b = 7 e c = 0)

3º) 4x2– 11 = 0 (a = 4, b = 0 e c = –11)

A – Resolução da equação do 2º grau

Exemplos:

1º) Resolver em R a equação:

x2-16=0

Notemos que nesta equação do 2º grau o coeficiente b é igual a zero por isto ela é chamada de equação do 2º grau incompleta. Vamos acompanhar a sua resolução:

x2-16=0 x2=16

x2-16=0 x = –4 ou x = +4

Assim: Equação do Segundo Grau


2º) Resolver em R a equação:

x2 + 11x = 0

Notemos que nesta equação do 2º grau o coeficiente c é igual a zero e por isto ela é chamada, também, de equação do 2º grau incompleta. Vamos acompanhar a sua resolução:

x2 + 11x = 0 x(x + 11) = 0

x2 + 11x = 0 x = 0 ou x + 11 = 0

x2 + 11x = 0 x = 0 ou x = –11

Assim:
Equaçao do Segundo Grau


3º) Resolver em R a equação:

x2 + 4x + 4 = 16

Observemos que x2 + 4x + 4 é, na sua forma fatorada, é igual a (x + 2)2, então:

x2 + 4x + 4 = 16 passa a ser (x + 2)2 = 16

Assim:


x2 + 4x + 4 = 16 (x + 2)2 = 16

x2 + 4x + 4 = 16 x + 2 = –4 ou x + 2 = 4

x2 + 4x + 4 = 16 x = –6 ou x = 2

Assim: Equação do Segundo Grau


4º) Resolver em R a equação:

x2– 6x + 5 = 0

Observemos que x2– 6x + 5 não é um quadrado perfeito, donde se conclui que o procedimento utilizado no exemplo anterior não poderá repetido. Não poderá ser repetido a menos que façamos algumas modificações na equação, como veremos a seguir:

x2é “o quadrado do primeiro”, 6x é “duas vezes o primeiro (que é x) pelo segundo”, logo, o segundo só poderá ser o número 3 e, assim, “o quadrado do segundo será igual a 9”. Como o quadrado perfeito só aparecerá se tivermos x2 – 6x + 9, acrescentaremos aos dois membros da igualdade o número 9.

Assim:


x2 – 6x + 5 = 0 x2– 6x + 5 + 9 = 9

x2– 6x + 5 = 0 x2– 6x + 9 = 4

x2– 6x + 5 = 0 (x – 3)2 = 4

x2– 6x + 5 = 0 x – 3 = –2 ou x – 3 = 2

x2 – 6x + 5 = 0 x = 1 ou x = 5

Assim: Equação Segundo Grau



B – Fórmula de Bhaskara

Vamos resolver a equação: ax2 + bx + c = 0, que é a forma geral da equação do 2º grau.
Inicialmente multiplicamos os dois membros da igualdade por a. Teremos:

a2x2+ abx + ac = 0

Notemos que a expressão:


Equação Segundo Grau

é um quadrado perfeito e, assim podemos acrescentar aos dois membros da igualdade o número Equação Segundo Grau.
a2x2 + abx + Equação Segundo Grau = Equação Segundo Grau

Logo:


Equação Segundo Grau

Chamando b2– 4ac de discriminante da equação do 2º grau, que será representado pela letra grega delta (delta), teremos:

Equação Segundo Grau



Dessa forma, resolvemos a equação do 2º grau com os coeficientes literais a, b e c o que nos permite estabelecer uma fórmula já nossa conhecida, chamada “fórmula de Bhaskara” a qual resolverá qualquer equação do 2º grau, bastando substituir os coeficientes pelos números na equação a resolver.



Equação Segundo Grau



Exemplo

Resolver em R a equação

5x2– 12x + 4 = 0

temos, a = 5, b = –12 e c = 4

substituindo na fórmula de Bhaskara.

Equação Segundo Grau



Observação: Se a equação não estiver na forma ax2 + bx + c = 0 deve ser preparada através das operações conhecidas tais como eliminação de denominadores, retirada de parênteses, dentre outras.



C. Discussão do Número de Soluções da Equação do 2º Grau

Quando resolvemos uma equação do 2º grau, já colocada na sua forma normal é importante observar que três casos podem surgir em relação ao cálculo do discriminante. Observe:

1º caso: > 0 A equação terá duas raízes reais e distintas.

Exemplo

Resolver em R:


Equação Segundo grau



2º caso: = 0 A equação terá duas raízes reais e iguais.

Exemplo

Resolver em R:



Equação Segundo grau



3º caso: < 0 A equação não terá raízes reais. Exemplo

Equação Segundo grau








Verbos pronominais

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
www.youtube.com/accbarroso1   

Ao nos atermos aos estudos gramaticais, constatamos que estes são dotados de uma notória complexidade. Contudo, à medida que vamos estabelecendo familiaridade com os fatos linguísticos e suas respectivas particularidades, percebemos que tudo é uma questão de nos adequarmos às tantas regras existentes que, embora “aparentemente” confusas, tornam-se facilmente compreensíveis mediante nosso conhecimento, manifestado de forma gradativa.
Desta forma, no que tange ao estudo dos verbos, a situação não é diferente, mesmo porque tal classe gramatical se constitui de inúmeras peculiaridades. E por elas mencionar, o estudo a que se deve o artigo em questão faz referência aos chamados verbos pronominais, cuja característica principal reside no fato de trazerem para junto de si o pronome oblíquo, uma vez que representam atitudes próprias do sujeito.
Representando esta classe temos o caso dos verbos “queixar-se, arrepender-se, zangar-se, dedicar-se” – chamados de essencialmente pronominais. Como também há aqueles considerados acidentalmente pronominais, representados pelos verbos “enganar-se, mudar-se, pentear-se”.
Partindo-se desse pressuposto, convém nos atermos à forma pela qual estes são conjugados, levando-se em consideração os modos indicativo, subjuntivo e imperativo, seguidos de seus respectivos tempos. Para tanto, elegeremos como exemplo o verbo queixar-se, assim evidenciado:
Modo indicativo
Modo subjuntivo
Modo imperativo

Por Vânia Duarte
Graduada em Letras
Equipe Brasil Escola

Radicais


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        


1.0 - Entendendo melhor os Números Irracionais





2.0 - Raiz Enésima de um Número




4.0 - Denominação dos Radicais





5.0 - Propriedade Fundamental dos Radicais




6.0 - Outras Propriedades dos Radicais




7.0 - Redução de Radicais ao mesmo índice


extraido de www.matematicamuitofacil.com

Matemáticos

Introdução : A matemática é a ciência dos números e dos cálculos. Desde a antiguidade, o homem utiliza a matemática para facilitar a vida e organizar a sociedade. A matemática foi usada pelos egípcios nas construção de pirâmides, diques, canais de irrigação e estudos de astronomia. Os gregos antigos também desenvolveram vários conceitos matemáticos. Atualmente, esta ciência está presente em várias áreas da sociedade como, por exemplo, arquitetura, informática, medicina, física, química etc. Podemos dizer, que em tudo que olhamos existe a matemática.

Abaixo, um pequeno histórico da evolução histórica da matemática :

1800 a.C. - Na Mesopotâmia, os sumérios desenvolvem um dos primeiros sistemas numéricos, composto de 60 símbolos.

520 a.C. - O matemático grego Eudoxo de Cnido define e explica os números irracionais.


300 a.C. - Euclídes desenvolve teoremas e sintetiza diversos conhecimentos sobre geometria. É o início da Geometria Euclidiana.


250 - Diofante estuda e desenvolve diversos conceitos sobre álgebra.


500 - Surte na Índia um símbolo para especificar o algarismo zero.


1202 - Na Itália, o matemático Leonardo Fibonacci começa a utilizar os algarismo arábicos.


1551 - Aparece o estudo da trigonometria, facilitando em pleno Renascimento Científico, o estudo dos astros.


1591 - O francês François Viète começa a representar as equações matemáticas, utilizando letras do alfabeto.


1614 - O escocês John Napier publica a primeira tábua de algorítimos.


1637 - O filósofo, físico e matemático francês René Descartes desenvolve uma nova disciplina matemática : a geometria analítica, com a misitura de álgebra e geometria.


1654 - Os matemáticos franceses Pierre de Fermat e Blaise Pascal desenvolvem estudos sobre o cálculo de probabilidade.


1669 - O físico e matemático inglês Isaac Newton desenvolve o cálculo diferencial e integral.


1685 - O inglês John Wallis cria os números imaginários.


1744 - O suíço Leonard Euler desenvolve estudos sobre os números transcendentais.


1822 - A criação da geometria projetiva é desenvolvida pelo francês Jean Victor Poncelet.


1824 - O norueguês Niels Henrik Abel conclui que é impossível resolver as equações de quinto grau.


1826 - O matemático russo Nicolai Ivanovich Lobachevsky desenvolve a geometria não euclidiana.


1931 - Kurt Gödel, matemático alemão, comprova que em sistemas matemáticos existem teoremas que não podem ser provados nem desmentidos.


1977 - O matemático norte-americano Robert Stetson Shaw faz estudos e desenvolve conhecimentos sobre A Teoria do Caos.


1993 - O matemático inglês Andrew Wiles consegue provar através de pesquisas e estudos o último teorema de Fermat.

extraido do colaweb

Divisibilidade

Conhecer os critérios de divisibilidade facilita a resolução de cálculos envolvendo divisões. Vejamos alguns critérios de divisibilidade:



DIVISIBILIDADE POR 2

Um número é divisível por 2 quando é par.

Números pares são os que terminam em 0, ou 2, ou 4, ou 6 , ou 8.

Ex : 42 - 100 - 1.445.086 - 8 - 354 - 570


DIVISIBILIDADE POR 3

Um número é divisível por 3 quando a soma dos seus algarismos é divisível por 3.

Ex : 123 (S= 1 + 2 + 3 = 6) - 36 (S=9) - 1.478.391 ( S=33) - 570 (S=1


DIVISIBILIDADE POR 4

Um número é divisível por 4 quando os dois últimos algarismos formam um número divisível por 4.

Ex : 956 - 844 - 1.336 - 120 - 8.357.916 - 752 - 200


DIVISIBILIDADE POR 5

Um número é divisível por 5 quando termina em 0 ou 5 .

Ex : 475 - 800 - 1.267.335 - 10 - 65


DIVISIBILIDADE POR 6

Um número é divisível por 6 quando é divisível por 2 e3 ao mesmo tempo.

Ex : 36 - 24 - 126 - 1476


DIVISIBILIDADE POR 7

Tomar o último algarismo e calcular seu dobro. Subtrair esse resultado do número formado pelos algarismos restantes. Se o resultado for divisível por 7 então, o número original também será divisível por 7.

Ex1 :

238 : 8 x 2 = 16

23 - 16 = 7 : como 7 é divisível por 7 , 238 também é divisível.

693 : 3 x 2 = 6

69 - 6 = 63

63 : 3 x 2 = 6

6 - 6 = 0 : como 0 é divisível por 7, 693 também é divisível.

Ex2 :

235 : 5 x 2 = 10

23 - 10 = 13 : como 13 não é divisível por 7, 235 também não é divisível.


DIVISIBILIDADE POR 8

Um número é divisível por 8 quando os três últimos algarismos formam um número divisível por 8.

Ex : 876.400 - 152 - 245.328.168


DIVISIBILIDADE POR 9

Um número é divisível por 9 quando a soma dos seus algarismos é divisível por 9.

Ex : 36 - 162 - 5463 - 5.461.047


DIVISIBILIDADE POR 10

Um número é divisível por 10 quando termina em 0.

Ex : 100 - 120 - 1.252.780 - 1.389.731.630


DIVISIBILIDADE POR 11

Quando a diferença entre as somas dos algarismos de ordem ímpar e de ordem par, a partir da direita for múltipla de 11.

Ex : 7.973.207

S (ordem ímpar) = 7 + 2 + 7 + 7 = 23

S (ordem par) = 0 + 3 + 9 = 12

diferença = 11


OBS: NÚMERO DE DIVISORES:

O conjunto dos divisores de um número natural x é o conjunto D(x) formado por todos os números naturais que são divisores de x.

Exemplo: o conjunto dos divisores de 36.

D(36) = { 1, 2, 3, 4, 6, 9, 12, 18, 36}

Algarismo romano

SISTEMA DE NUMERAÇÃO ROMANA

Os romanos usavam um sistema interessante para representar os números.

Eles usavam sete letras do alfabeto e a cada uma delas atribuíam valores:

I
V
X
L
C
D
M

1
5
10
50
100
500
1.000



Os numerais I, X, C, M só podem ser repetidos até três vezes.

I = 1 II = 2 III =3
X = 10 XX = 20 XXX = 30
C = 100 CC = 200 CCC = 300
M = 1.000 MM = 2.000 MMM = 3.000


Vamos aprender alguns numerais romanos.

I = 1
XX = 20
CCC = 300

II = 2
XXX = 30
CD = 400

III = 3
XL = 40
D = 500

IV = 4
L = 50
DC = 600

V = 5
LX = 60
DCC = 700

VI = 6
LXX = 70
DCCC = 800

VII = 7
LXXX = 80
CM = 900

VIII = 8
XC = 90
M = 1.000

IX = 9
C = 100
MM = 2.000

X = 10
CC = 200
MMM = 3.000



ATENÇÃO!

Os numerais I, X e C, escritos à direita de numerais maiores, somam-se seus valores aos desses numerais.

Exemplos:

VII = 7 ( 5 + 2 ) LX = 60 ( 50 + 10 ) LXXIII = 73 (50+20+3)

CX = 110 (100+10) CXXX = 130 (100+30) MCC = 1.200 (1.000+200)


Os numerais I, X e C, escritos à esquerda de numerais maiores, subtraem-se seus valores aos desses numerais.

Exemplos:

IV = 4 (5-1) IX = 9 (10-1) XL = 40 (50-10)

XC = 90 (100-10) D = 400 (500-100) CM = 900 (1.000-100)


Colocando-se um traço horizontal sobre um ou mais numerais, multiplica-se seu valor por 1.000.

Exemplos: _ _ _
V = 5.000 IX = 9.000 X = 10.000

Cinema

Por Patrícia Lopes




Principal elemento do cinema
Cinema consiste na arte de produzir obras estéticas, narrativas ou não, utilizando a técnica de projetar fotogramas de forma rápida e sucessiva, criando a impressão de movimento.

Um dos momentos mais importantes para o desenvolvimento das artes foi a invenção da fotografia, principalmente da fotografia animada. O cinema é possível graças à invenção do cinematógrafo criado pelos irmãos Lumière no final do século XIX. Esses foram os primeiros a conseguir passar um filme num ritmo constante por meio de uma película. A primeira apresentação de cinema aconteceu no Grand Café, em Paris, em 28 de dezembro de 1895. A apresentação foi composta por uma série de dez filmes, com duração de 40 a 50 segundos cada, uma vez que os rolos de película tinham quinze metros de comprimento.

A primeira sala construída especificamente para a projeção de filmes surgiu em Nova York, Estados Unidos, no ano de 1913. Com a Primeira Guerra Mundial, houve um declínio da produção européia, enquanto se assistia a ascensão dos filmes norte-americanos, com o estabelecimento do cinema espetáculo. Um grupo de produtores cinematográficos instalou-se em Hollywood, onde surgiu o templo do cinema.

O Oscar, troféu concedido anualmente às melhores produções de cinema, em 24 categorias, foi criado em 1927. A Academia de Artes e Ciências Cinematográficas de Hollywood (EUA) responsável por outorgá-lo, compõe-se de 5 mil membros, entre atores, atrizes, produtores, roteiristas, cenógrafos, diretores e fotógrafos.

O principal evento do cinema europeu é o Festival de Cannes, que acontece anualmente em maio, na França.

Termos semelhantes

Termos semelhantes
Para que um polinômio tenha termos semelhantes ele deverá possuir dois ou mais monômios. Esses termos semelhantes são monômios encontrados em um mesmo polinômio que possui partes literais e expoentes iguais.

Veja o exemplo de polinômios com termos semelhantes:

2x2 – 5x + 3 – 3x2 – 3 + 7x é um polinômio com 6 monômios.

2x2 e – 3x2 são semelhantes, pois as suas partes literais são as mesmas.

– 5x e 7x são semelhantes, pois possuem partes literais iguais.

+3 e – 3 são semelhantes, pois nenhum dos dois possui partes literais.

Sabendo quais são os termos semelhantes no polinômio podemos uni-los, ou seja, colocar um do lado do outro.

2x2 – 3x2 – 5x + 7x + 3 – 3
↓ ↓ ↓
- x2 + 2x + 0

- x2 + 2x

O polinômio encontrado é o polinômio 2x2 – 5x + 3 – 3x2 – 3 + 7x na forma reduzida, ou seja, sem nenhum termo semelhante.


Grau de um polinômio

O grau de um monômio é a soma dos expoentes da sua parte literal;

9x5 possui apenas um expoente, então o monômio é do 5º grau.

8x2 y4 possui dois expoentes, então devemos somá-los 2 + 4 = 6, portanto esse polinômio é de 6º grau.

19abc possui três expoentes, devemos somá-los 1 + 1 + 1 = 3, portanto esse polinômio é de 3º grau.

Num polinômio que possui mais de 2 monômios, para encontrarmos o seu grau é preciso observar se ele está com os termos semelhantes reduzidos se estiver escrito na forma reduzida, o grau que ele irá assumir é o do monômio que tiver o grau maior.

5x4 + 3x2 – 5 está escrito na forma reduzida e o monômio de maior grau é o 5x4, então o polinômio será do 4º grau.

x2 + 4x – x2 + 10, possui termo semelhante (x2), então a sua forma reduzida ficará
4x + 10, o monômio de maior grau é 4x, portanto o grau do polinômio será de 1º grau.

Fatoração

Exercícios Resolvidos de Fatoração Algébrica


Exemplo 19) Fatore c2 - 2bc - a2 + b2

Reagrupando o polinômio, teremos : b2 - 2bc + c2 - a2 = (b2 - 2bc + c2) - a2

O trinômio b2 - 2bc + c2 pode ser fatorado como : (b - c)2

E dessa forma, teremos a diferença de dois quadrados (b - c)2 - a2, e finalmente, teremos :

(b - c)2 - a2 = (b - c + a) (b - c - a)

Exemplo 20) Fatore: 5m8 + 10m4 - 15

Percebemos que o fator 5 pode ser evidenciado, Assim:

5m8 + 10m4 - 15 = 5(m8 + 2m4 - 3)

O trinômio m8 + 2m4 - 3 não é um trinômio quadrado perfeito, mas poderá ser um trinômio de Stevin.
E realmente o é, pois os números 3 e -1, têm por soma 2 e por produto - 3, e a soma aparece multiplicada pela raiz quadrada m4 de m8.

Dessa forma, teremos : 5m8 + 10m4 - 15 = 5(m8 + 2m4 - 3) = 5(m4 + 3) (m4 - 1)

E como (m4 - 1) = (m2 + 1) (m2 - 1) , e como (m2 - 1) (m + 1)(m - 1) teremos : 5m8 + 10m4 - 15 = 5(m4 + 3)(m2 + 1)(m + 1)(m - 1)

Exemplo 21) Fatore: (x - y)2 + 2(y - x) - 24

Antes de mais nada, lembremos que (x - y)2 = (y - x)2 ( verifique se isso é verdade )

Com isso podemos escrever a expressão dada como : (y - x)2 + 2(y - x) - 24

Para facilitar o reconhecimento do caso de fatoração, chamemos o binômio (y - x) de A, então :

(y - x)2 + 2(y - x) - 24 = A2 + 2A - 24

O trinômio não é quadrado perfeito, mas parece ser de Stevin.
Verificando, percebemos que os números - 4 e + 6 têm por soma + 2 e por produto - 24 e a soma + 2 aparece multiplicada pela raiz
quadrada A de A2.

E assim : A2 + 2A - 24 = (A + 6) (A - 4) e como A = y - x, finalmente teremos: (x - y)2 + 2(y - x) - 24 = (y - x + 6) (y - x - 4)

Exemplo 22) Fatore x6 - y6

1ª Resolução: Considerando uma diferença de dois cubos

Como ambos são termos cúbicos, essa diferença poderá ser fatorada.
A raiz cúbica de x6 é x2 e a raiz cúbica de y6 é y2. Assim já temos o nosso primeiro fator x2 - y2
A partir dele montaremos o nosso segundo fator. O quadrado de x2 é x4 ; o produto entre x2 e y2 é x2y2 e o quadrado do
segundo é y2 é y4.

E dessa forma, teremos:

x6 - y6 = (x2 - y2) ( x4 + x2y2 + y4). Como a diferença de quadrados (x2 - y2) ainda pode ser fatorado, teremos :

x6 - y6 = (x + y) (x - y) ( x4 + x2y2 + y4).

Se escrevermos o trinômio ( x4 + x2y2 + y4) de uma outra forma, perceberemos que ele também poderá ser fatorado. Vejamos :

x4 + x2y2 + y4 = x4 + 2x2y2 + y4 - x2y2 = (x2 + y2)2 - x2y2, que é uma diferença de dois quadrados.

Assim : (x2 + y2)2 - x2y2 = ( x2 + y2 + xy) ( x2 + y2 - xy) = ( x2 - xy + y2) ( x2 + xy + y2). E finalmente :

x6 - y6 = (x + y) (x - y) ( x2 - xy + y2) ( x2 + xy + y2)

2ª Resolução: Considerando uma diferença de dois quadrados. Como ambos são quadrados, temos uma diferença de dois quadrados.

A raiz quadrada de x6 é x3 e a raiz quadrada de y6 é y3.

Assim já temos o nosso primeiro fator (x3 + y3) e o segundo fator (x3 - y3).

Assim, teremos : x6 - y6 = (x3 + y3) (x3 - y3) .
Como a soma e a diferença de dois cubos (x3 + y3) e (x3 - y3) ainda podem ser fatorados, teremos :

x6 - y6 = (x3 + y3) (x3 - y3) = (x + y) ( x2 - xy + y2) (x - y) ( x2 + xy + y2) , ou ainda :

x6 - y6 = (x + y) (x - y) ( x2 - xy + y2) ( x2 + xy + y2)

OBSERVAÇÃO MUITO IMPORTANTE

Sempre que fatoramos uma expressão algébrica ou quando efetuamos um produto notável devemos utilizar o sinal de identidade
que é uma ampliação do conceito de igualdade.

Vamos entender melhor essa diferenciação:

Quando afirmamos que 3x + 4 = 19, sabemos que apenas o valor de x = 5 tornará verdadeira essa sentença.
Nesse caso utilizaremos o sinal de igualdade.

Elipse

1 – Definição:

Dados dois pontos fixos F1 e F2 de um plano, tais que a distancia entre estes pontos seja igual a 2c > 0, denomina-se elipse, à curva plana cuja soma das distancias de cada um de seus pontos P à estes pontos fixos F1 e F2 é igual a um valor constante 2a , onde a > c.

Assim é que temos por definição:

PF1 + PF2 = 2 a

Os pontos F1 e F2 são denominados focos e a distancia F1F2 é conhecida com distancia focal da elipse.

O quociente c/a é conhecido como excentricidade da elipse. Como, por definição,
a > c, podemos afirmar que a excentricidade de uma elipse é um número positivo menor que a unidade.



2 – Equação reduzida da elipse


Seja P(x, y) um ponto qualquer de uma elipse e sejam F1(c,0) e F2(-c,0) os seus focos.

Sendo 2.a o valor constante com c < a, como vimos acima, podemos escrever:


PF1 + PF2 = 2.a


Usando a fórmula da distancia entre dois pontos, poderemos escrever:




Observe que x – (-c) = x + c.


Quadrando a expressão acima, vem:




Com bastante paciência e aplicando as propriedades corretas, a expressão acima depois de desenvolvida e simplificada, chegará a:


b2.x2 + a2.y2 = a2.b2, onde b2 = a2 – c2


Dividindo agora, ambos os membros por a2b2 vem finalmente:


Veja a figura abaixo, que é elucidativa:

NOTAS:
1 – o eixo A1A2 é denominado eixo maior da elipse.
2 – o eixo B1B2 é denominado eixo menor da elipse.
3 – é válido que:
a2 - b2 = c2, onde c é a abcissa de um dos focos da elipse.
4 – como a excentricidade e da elipse é dada por e = c/a , no caso extremo de termos b = a, a curva não será uma elipse e sim, uma circunferência, de excentricidade nula, uma vez que sendo
b = a resulta c = 0 e, portanto e = c/a = 0/a = 0.
5 – o ponto (0,0) é o centro da elipse.
6 – se o eixo maior da elipse estiver no eixo dos y e o eixo menor estiver no eixo dos x, a equação da elipse passa a ser:

Circunferência


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com


Circunferência é o conjunto de todos os pontos de um plano eqüidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência.
A circunferência possui características não comumente encontradas em outras figuras planas.
Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo 0 é menor ou igual que uma distância r dada.


Circunferência

A circunferência é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência.
A circunferência possui características não comumente encontradas em outras figuras planas, como o fato de ser a única figura plana que pode ser rodada em torno de um ponto sem modificar sua posição aparente. É também a única figura que é simétrica em relação a um número infinito de eixos de simetria. A circunferência é importante em praticamente todas as áreas do conhecimento como nas Engenharias, Matemática, Física, Química, Biologia, Arquitetura, Astronomia, Artes e também é muito utilizado na indústria e bastante utilizada nas residências das pessoas.


Algumas definições


Raio - Raio de uma circunferência (ou de um círculo) é um segmento de reta com uma extremidade no centro da circunferência e a outra extremidade num ponto qualquer da circunferência.
Arco – é uma parte da circunferência limitada por dois pontos, que se chamam extremidades do arco.


Corda – é um segmento de infinitos pontos alinhados, cujos pontos extremos com um ponto da circunferência. Quando esse segmento passa pelo centro da circunferência, temos o que chamamos de diâmetro.

O diâmetro é sempre a corda maior: como é a corda que passa pelo centro, sua medida é igual a duas vezes a medida do raio.
Assim, para medir a maior distância entre dois pontos de uma circunferência, deve medir o diâmetro, ou seja, o seu instrumento de medida (régua, trena ou fita métrica) deve passar pelo centro da circunferência. Em alguns casos, porém, apenas uma parte da circunferência é utilizada.

Tangente – é a reta que tem um único ponto comum à circunferência, este ponto é conhecido como ponto de tangência ou ponto de contato.

Secante – é a reta que intercepta a circunferência em dois pontos distintos, se essa reta intercepta a circunferência em dois pontos quaisquer, podemos dizer também que é a reta que contem uma corda.
Para simbolizar a corda que une os pontos P e Q, utilizamos a notação de segmento de reta, ou seja, corda PQ.
Por outro lado, o arco também começa em P e termina em Q mas, como você pode ver, a corda e o arco são diferentes e por isso a simbologia também deve ser diferente. Para o arco, usamos PQ.
Da mesma forma que a maior corda é o diâmetro, o maior arco é aquele que tem as
extremidades em um diâmetro. Esse arco é chamado semicircunferência, e a parte do círculo correspondente é chamada semicírculo.



O Comprimento da circunferência

Quanto maior for o raio (ou o diâmetro) de uma circunferência maior será o seu comprimento. Imagine que você vai caminhar em torno de uma praça circular: você andará menos em uma praça com 500 metros de diâmetro do que numa praça com 800 metros de diâmetro.
No exemplo abaixo, cada uma das três circunferências foi cortada no ponto marcado com uma tesourinha, e a linha do traçado de cada uma delas foi esticada.


Círculo


Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo 0 é menor ou igual que uma distância r dada. Quando a distância é nula, o círculo se reduz a um ponto. O círculo é a reunião da circunferência com o conjunto de pontos localizados dentro da mesma. É uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua volta quantos objetos circulares estão presentes: nas moedas, nos discos, a mesa de refeição...
Agora pense, o que faríamos para:
* riscar no tecido o contorno de uma toalha de mesa redonda?
* desenhar um círculo no seu caderno?
* marcar o limite das escavações de um poço no chão?
Quando falamos em círculo, ninguém tem dúvida quanto ao formato dessa figura geométrica. No entanto, em geometria, costuma-se fazer uma pequena distinção entre círculo e circunferência, sobre a qual você já deve ter ouvido falar.
A superfície de uma moeda, de uma pizza ou de um disco é um círculo.
Quando riscamos no papel ou no chão apenas o contorno do círculo, este contorno é chamado circunferência. O compasso é um instrumento utilizado para desenhar circunferências.

O compasso possui duas “pernas”, uma delas tem uma ponta metálica, que deve ser assentada no papel, no local que será o centro da circunferência, a outra ponta,
com a grafite, deve ser girada para obter o traçado da circunferência.

Antes de traçar uma circunferência, devemos decidir qual será a abertura entre as pernas do compasso.

À distância entre as duas pontas do compasso define o raio da circunferência.
Utilizando uma tachinha, um barbante e um giz podem-se riscar uma circunferência no chão ou no tecido. Os operários, jardineiros e pedreiros, por exemplo, costumam usar uma corda e duas estacas.


Equação reduzida da circunferência

Uma circunferência é determinada quando conhecemos a posição do seu centro e o valor do seu raio. Imaginando no plano cartesiano uma circunferência de centro no ponto C = (a, b) e com raio R, vamos representar por P = (x, y) um ponto qualquer que pertence a essa circunferência. Que propriedade tem o ponto P?
Se P pertence à circunferência, sua distância até o centro é igual ao raio.
Como a distância do ponto C = (a, b) ao ponto P = (x, y) é igual a R, usando a fórmula da distância entre dois pontos temos:
(x - a)2 + (y - b)2 = R
Elevando ao quadrado os dois membros, a expressão obtida é a equação da circunferência de centro (a, b) e raio R.


Portanto, (x - a)² + (y - b)² = r² é a equação reduzida da circunferência e permite determinar os elementos essenciais para a construção da circunferência: as coordenadas do centro e o raio.
Observação: Quando o centro da circunferência estiver na origem (C(0,0)), a equação da circunferência será x² + y² = r² .

Exemplo:
Seja uma circunferência cuja equação é:

(x - 2) ² + (y - 3)² = 100
Verificar se a circunferência passa pela origem ,quais as coordenadas do centro e quanto vale o raio:

Pela expressão temos que: R = 10 e C(2,3)

Fazendo x=0 e y=0, temos que: (-2) ² + (-3) ² = 13
Como 13 é diferente de 100, logo a circunferência não passa pela origem.


Equação geral da circunferência

Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:


Como exemplo, vamos determinar a equação geral da circunferência de centro C(2, -3) e raio r = 4.
A equação reduzida da circunferência é: (x - 2)² +(y + 3) ² = 16
Desenvolvendo os quadrados dos binômios, temos:



Determinação do centro e do raio da circunferência, dada a equação geral

Dada a equação geral de uma circunferência, utilizamos o processo de fatoração de trinômio quadrado perfeito para transformá-la na equação reduzida e , assim, determinamos o centro e o raio da circunferência.
Para tanto, a equação geral deve obedecer a duas condições:
* os coeficientes dos termos x² e y² devem ser iguais a 1;
* não deve existir o termo xy.
Então, vamos determinar o centro e o raio da circunferência cuja equação geral é

x² + y² - 6x + 2y - 6 = 0.
Observando a equação, vemos que ela obedece às duas condições. Assim:
* 1º passo: agrupamos os termos em x e os termos em y e isolamos o termo independente

x² - 6x + _ + y² + 2y + _ = 6
* 2º passo: determinamos os termos que completam os quadrados perfeitos nas variáveis x e y, somando a ambos os membros as parcelas correspondentes

* 3º passo: fatoramos os trinômios quadrados perfeitos

(x - 3) ² + (y + 1) ² = 16
* 4º passo: obtida a equação reduzida, determinamos o centro e o raio


Posição de um ponto em relação a uma circunferência

Em relação à circunferência de equação (x - a) ² + (y - b) ² = r², o ponto P(m, n) pode ocupar as seguintes posições:
a) P é exterior à circunferência


b) P pertence à circunferência

c) P é interior à circunferência

Assim, para determinar a posição de um ponto P(m, n) em relação a uma circunferência, basta substituir as coordenadas de P na expressão (x - a) ² + (y - b) ² - r²:
* se (m - a) ² + (n - b) ² - r² > 0, então P é exterior à circunferência;
* se (m - a) ² + (n - b) ² - r² = 0, então P pertence à circunferência;
* se (m - a) ² + (n - b) ² - r² < 0, então P é interior à circunferência.


Posição de uma reta em relação a uma circunferência

Dadas uma reta s: Ax + Bx + C = 0 e uma circunferência α de equação (x - a) ² + (y - b)² = r², vamos examinar as posições relativas entre s e α :






Também podemos determinar a posição de uma reta em relação a uma circunferência calculando a distância da reta ao centro da circunferência. Assim, dadas a reta s: Ax + By + C = 0 e a circunferência α :
(x - a) ² + ( y - b ) ² = r², temos:


Assim:


Condições de tangência entre reta e circunferência

Dados uma circunferência α e um ponto P(x, y) do plano, temos:

a) se P pertence à circunferência, então existe uma única reta tangente à circunferência por P


b) se P é exterior à circunferência, então existem duas retas tangentes a ela por P


c) se P é interior à circunferência, então não existe reta tangente à circunferência passando pelo ponto P.


Posições Relativas entre Ponto e Circunferência

* Externo:
d > r ;
d - r > 0


* Interno:
d < r
d - r < 0

* Pertence à Circunferência:
d = r
d - r = 0


Posições Relativas entre Reta e Circunferência

* Tangente:

A reta tem um só ponto A comum com a circunferência, e os outros pontos da reta são exteriores à circunferência. A tangente a um círculo, num ponto, é a perpendicular ao raio que tem extremidade nesse ponto.
d = r
* Secante:

A reta tem dois pontos distintos A e B comuns com a circunferência.
d < r

* Externo:

A reta não tem ponto comum com a circunferência. Todos os pontos da reta são exteriores à circunferência
d > r


Posições Relativas entre duas Circunferências

Obs: (d = distância entre os Centros)

1 - Não se interceptam:
* Externamente:
A duas circunferências não têm ponto em comum.
d > r1 + r2

* Internamente:
As duas circunferências não têm pontos em comum e os pontos de uma delas são interiores à outra.
d < |r1 - r2|

2 - São Tangentes:
* Externamente:
As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são exteriores à outra. O ponto comum é o ponto de tangência.
d = r1 + r2
* Internamente:
As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são interiores à outra. O ponto comum é o ponto da tangência.
d = |r1 - r2|
3 - São Secantes:
As duas circunferências têm dois pontos distintos em comum. São denominadas circunferências SECANTES.
|r1 - r2| < d < r1 + r2

4 - Caso particular: Concêntricas:
As duas circunferências são interiores e os centros das duas são coincidentes.
d = 0


Conclusão

Nosso trabalho consiste em falar sobre circunferência. Nesta ação, conseguimos compreender o que é circunferência; é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência.
Autoria: Daiane Fernandes