sexta-feira, 22 de maio de 2020

Adição e subtração de frações

Professor de Matemática no Colégio Estadual Dinah Gonçalves
E Biologia na rede privada de Salvador-Bahia
Professor Antonio Carlos carneiro Barroso           www.youtube.com/accbarroso1
email accbarroso@hotmail.com

Adição e subtração de frações

Por Marcelo Rigonatto




Operações com frações
Fração pode ser definida como parte de um todo, parte de algo. Todo elemento do conjunto dos números racionais pode ser escrito na forma de fração. Para o conjunto dos números racionais estão definidas as operações de adição, subtração, multiplicação e divisão. Veremos como se dão as operações de adição e subtração de frações ou números racionais.

1. Adição.

A maioria dos livros didáticos apresenta a operação de adição, envolvendo frações, utilizando o conceito de mínimo múltiplo comum. Exibiremos outro método para adicionar frações sem a necessidade de se calcular o MMC dos denominadores. Veja como isso é feito.

Considere duas frações:

Podemos realizar a adição dessas duas frações da seguinte forma:

Observe alguns exemplos.

Exemplo 1. Efetue:
a)

b)

c)

d)

2. Subtração.

A subtração de frações pode ser realizada de maneira análoga à adição. Veja:

Considere duas frações:

A subtração de duas frações quaisquer é dada por:

Exemplo 2. Efetue as subtrações:
a)

b)

c)

d)

Esse método de somar e subtrair frações simplifica os cálculos, tornando o processo mais rápido e dinâmico.

Funções, Inversa e Composta

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com



1 - FUNÇÃO INVERSA
Dada uma função f : A ® B , se f é bijetora , então define-se a função inversa f -1 como sendo a função de B em A , tal que f -1 (y) = x .
Veja a representação a seguir:

É óbvio então que:
a) para obter a função inversa , basta permutar as variáveis x e y .
b) o domínio de f -1 é igual ao conjunto imagem de f .
c) o conjunto imagem de f -1 é igual ao domínio de f .
d) os gráficos de f e de f -1 são curvas simétricas em relação à reta y = x ou seja , à bissetriz do primeiro quadrante .
Exemplo:Determine a INVERSA da função definida por y = 2x + 3.
Permutando as variáveis x e y, fica: x = 2y + 3
Explicitando y em função de x, vem:
2y = x - 3 \ y = (x - 3) / 2, que define a função inversa da função dada.
O gráfico abaixo, representa uma função e a sua inversa.
Observe que as curvas representativas de f e de f-1, são simétricas em relação à reta
y = x, bissetriz do primeiro e terceiro quadrantes.

Exercício resolvido:
A função f: R ® R , definida por f(x) = x2 :
a) é inversível e sua inversa é f -1 (x) = Ö x
b) é inversível e sua inversa é f -1(x) = - Ö x
c) não é inversível
d) é injetora
e) é bijetora
SOLUÇÃO:
Já sabemos que somente as funções bijetoras são inversíveis, ou seja, admitem função inversa. Ora, a função f(x) = x2, definida em R - conjunto dos números reais - não é injetora, pois elementos distintos possuem a mesma imagem. Por exemplo,
f(3) = f(-3) = 9. Somente por este motivo, a função não é bijetora e, em conseqüência, não é inversível.
Observe também que a função dada não é sobrejetora, pois o conjunto imagem da função f(x) = x2 é o conjunto R + dos números reais não negativos, o qual não coincide com o contradomínio dado que é
igual a R. A alternativa correta é a letra C.
2 - FUNÇÃO COMPOSTA
Chama-se função composta ( ou função de função ) à função obtida substituindo-se a variável independente x , por uma função.
Simbologia : fog (x) = f(g(x)) ou gof (x) = g(f(x)) .
Veja o esquema a seguir:

Obs : atente para o fato de que fog ¹ gof , ou seja, a operação " composição de funções " não é comutativa .
Exemplo:
Dadas as funções f(x) = 2x + 3 e g(x) = 5x, pede-se determinar gof(x) e fog(x).
Teremos:
gof(x) = g[f(x)] = g(2x + 3) = 5(2x + 3) = 10x + 15
fog(x) = f[g(x)] = f(5x) = 2(5x) + 3 = 10x + 3
Observe que fog ¹ gof .
Exercícios resolvidos:
1 - Sendo f e g duas funções tais que: f(x) = ax + b e g(x) = cx + d . Podemos afirmar que a igualdade gof(x) = fog(x) ocorrerá se e somente se:
a) b(1 - c) = d(1 - a)
b) a(1 - b) = d(1 - c)
c) ab = cd
d) ad = bc
e) a = bc
SOLUÇÃO:
Teremos:
fog(x) = f[g(x)] = f(cx + d) = a(cx + d) + b \ fog(x) = acx + ad + b
gof(x) = g[f(x)] = g(ax + b) = c(ax + b) + d \ gof(x) = cax + cb + d
Como o problema exige que gof = fog, fica:
acx + ad + b = cax + cb + d
Simplificando, vem:
ad + b = cb + d
ad - d = cb - b \ d(a - 1) = b(c - 1), que é equivalente a d(a - 1) = b(c - 1), o que nos leva a concluir que a alternativa correta é a letra A. .
2 - Sendo f e g duas funções tais que fog(x) = 2x + 1 e g(x) = 2 - x então f(x) é:
a) 2 - 2x
b) 3 - 3x
c) 2x - 5
*d) 5 - 2x
e) uma função par.
SOLUÇÃO:
Sendo fog(x) = 2x + 1, temos: f[g(x)] = 2x + 1
Substituindo g(x) pelo seu valor, fica: f(2 - x) = 2x + 1
Fazendo uma mudança de variável, podemos escrever 2 - x = u, sendo u a nova variável. Portanto, x = 2 - u.
Substituindo, fica:
f(u) = 2(2 - u) + 1 \ f(u) = 5 - 2u
Portanto, f(x) = 5 - 2x , o que nos leva à alternativa D.
Agora resolva esta:
Dadas as funções f(x) = 4x + 5 e g(x) = 2x - 5k, ocorrerá gof(x) = fog(x) se e somente se k for igual a:
*a) -1/3
b) 1/3
c) 0
d) 1
e) -1

Vasectomia


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        


Vasectomia: a secção do conduto deferente.

A vasectomia consiste no método cirúrgico contraceptivo de esterilização masculina, através da secção dos ductos deferentes (conduto deferente) que conduzem os espermatozóides dos testículos para as vias externas do sistema genital masculino, impedindo a fecundação do espermatozóide com o óvulo, caso mantida relação heterossexual com penetração e ejaculação, coincidente com o período fértil feminino.

Dessa forma, o sêmen eliminado (ejaculado) não contém espermatozóides, contendo apenas a secreção do plasma seminal, uma mistura de substâncias produzidas pelas vesículas seminais, as glândulas bulbo uretrais e a próstata.

É importante informar que a vasectomia torna o indivíduo estéril, mas não interfere na síntese hormonal masculina e muito menos em seu desempenho sexual. Portanto, sem qualquer relação com a ereção ou tamanho do pênis, não afeta a virilidade do homem, que em situação de estímulo continua normalmente tendo orgasmo.

Muitos se recusam a esse procedimento de controle à natalidade, e também a outros meios mais simples, o uso de camisinha, por mero desconhecimento (instrução educacional), inconseqüência conjugal (prevenção à gravidez inoportuna e doenças sexualmente transmissíveis) e devido ao influente preceito social machista, induzindo psicologicamente o homem a imaginar que a vasectomia deturpa a masculinidade.

Por essa lógica que amedronta a “performance viril do homem”, muitos fazem opção pela laqueadura em suas esposas, enquanto a vasectomia é bem mais simples.
www.mundoeducacao.com.br

FATORAÇÃO

Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com          www.youtube.com/accbarroso1
Blog HTTP://ensinodematemtica.blogspot.com
http://accbarrosogestar.blogspot.com.br  
extraído do http://jmpgeo.blogspot.com

FATORAÇÃO



O QUE SIGNIFICA FATORAR?

Fatorar significa transformar em produto

FATORAÇÃO DE POLINÔMIOS

Fatorar um polinômio significa transformar esse polinômio num produto indicado de polinômios ou monômios e polinômios .
A propriedade distributiva será muito usada sob a denominação de colocar em evidencia. Vejamos a seguir alguns casos de fatoração.

1) FATOR COMUM
Vamos fatorar a expressão ax + bx + cx

Ax + bx + cx = x . (a + b + c)

O x é fator comum e foi colocado em evidência.

Exemplos


Vamos fatorar as expressões

1) 3x + 3y = 3 (x + y)
2) 5x² - 10x = 5x ( x – 2)
3) 8ax³ - 4a²x² = 4ax²(2x – a)

EXERCÍCIOS

1) Fatore as expressões:

a) 4x + 4y = R: 4 ( x + y)b) 7a – 7b = R: 7 (a - b)c) 5x – 5 = R: 5 (x - 1)d) ax – ay = R: a (x - y)e) y² + 6y = R: y (y + 6)f) 6x² - 4a = R: 2 (3x² - 2a)g) 4x⁵ - 7x² = R: x² ( 4x³ - 7)
h) m⁷ - m³ = R : m³( m⁴- 1)
i) a³ + a⁶ = R: a³ ( 1 + a³)
j) x² + 13x = R: x(x + 13)k) 5m³ - m² =
l) x⁵⁰ + x⁵¹ =
m) 8x⁶ - 12x³ =
n) 15x³ - 21x² =
o) 14x² + 42x =
p) x²y + xy² =

2) Fatore as expressões:

a) 2a – 2m + 2n = R: 2 (a -m+n)b) 5a + 20x + 10 = R: 5(a + 4x + 2)c) 4 – 8x – 16y = R: 4(1 - 2x - 4y)d) 55m + 33n = R: 11(5m + 3n)e) 35ax – 42ay =
f) 7am – 7ax -7an =
g) 5a²x – 5a²m – 10a² =
h) 2ax + 2ay – 2axy =

3) Fotore as expressões:

a) 15x⁷ - 3ax⁴ =
b) x⁷ + x⁸ + x⁹ =
c) a⁵ + a³ - a² =
d) 6x³ -10x² + 4x⁴ =
e) 6x²y + 12xy – 9xyz =
f) a(x -3) + b(x -3) =
g) 9 ( m + n )- a( m –n)


2) AGRUPAMENTO
Vamos fatorar a expressão ax + bx + ay + by

ax + bx + ay + by
x( a + b) + y ( a+ b)
(a + b) .( x +y)

Observe o que foi feito:

Nos dois primeiros temos “x em evidencia”
Nos dois últimos fomos “y em evidência”
Finalmente “ (a + b) em evidência”
Note que aplicamos duas vezes a fatoração utilizando o processo do fator comum

Exemplos:

Vamos fatorar as expressões:

1º exemplo

5ax + bx + 5ay + by
x.( 5a + b) + y (5a + b)
(x + y) (5a + b)

2º exemplo

x² + 3x + ax + 3a
x(x + 3) + a ( x + 3)
(x + 3) . ( x + a)


EXERCÍCIOS

1) Fatore as expressões:

a) 6x + 6y + ax + ay =
b) ax + ay + 7x + 7y=
c) 2a + 2n + ax +nx=
d) ax + 5bx + ay + 5by =
e) 3a – 3b + ax – bx =
f) 7ax – 7a + bx – b =
g) 2x – 2 + yx – y =
h) ax + a + bx + b =

2) Fatore as expressões:

a) m² + mx + mb + bx=
b) 3a² + 3 + ba² + b =
c) x³ + 3x² + 2x + 6 =
d) x³ + x² + x + 1 =
e) x³ - x² + x – 1 =
f) x³ + 2x² + xy + 2y =
g) x² + 2x + 5x + 10 =
h) x³ - 5x² + 4x – 20 =


3) DIFERENÇA DE DOIS QUADRADOS Vimos que : ( a+ b ) (a –b) = a² + b²
Sendo assim: a² + b²= ( a+ b ) (a –b)
Para fatorar a diferença de dois quadrados, basta determinar as raízes quadradas dos dois termos.

1º exemplo

x² - 49 = (x + 7) ( x – 7)


2º exemplo

9a² - 4b² = ( 3a + 2b) (3a – 2b)

Exercícios

1) Fatore as expressões:

a) a² - 25 =
b) x² - 1 =
c) a² - 4 =
d) 9 - x² =
e) x² - a² =
f) 1 - y² =
g) m² - n² =
h) a² - 64 =

2) Fatore as expressões

a) 4x² - 25 =
b) 1 – 49a² =
c) 25 – 9a² =
d) 9x² - 1 =
e) 4a² - 36 =
f) m² - 16n² =
g) 36a² - 4 =
h) 81 - x² =
i) 4x² - y²=
j) 16x⁴ - 9 =
k) 36x² - 4y² =
l) 16a² - 9x²y² =
m) 25x⁴ - y⁶ =
n) x⁴ - y⁴ =


4) TRINÔMIO QUADRADO PERFEITO

Vimos que:

(a +b)² = a² + 2ab + b² Logo a² + 2ab + b² = (a +b)²

(a -b)² = a² - 2ab + b² Logo a² - 2ab + b² = (a -b)²

Observe nos exemplos a seguir que:
Os termos extremos fornecem raízes quadras exatas.
Os termos do meio deve ser o dobro do produto das raízes.
o resultado terá o sinal do termo do meio.

EXERCÍCIOS

1) Coloque na forma fatorada as expressões:

a) x² + 4x + 4 = R:(x + 2)²b) x² - 4x + 4 = R:(x -2)²c) a²+ 2a + 1 = R: (a + 1)²d) a² - 2a + 1 = R: (a – 1)²e) x²- 8x + 16= R: ( x – 4)²f) a² + 6a + 9 = R: (a + 3)²g) a² - 6a + 9 = R: (a + 3)²h) 1 – 6a + 9a² = R: (1 – 3a)²
2) Fatore as expressões

a) m² -12m + 36=
b) a² + 14a + 49 =
c) 4 + 12x + 9x² =
d) 9a² - 12a + 4 =
e) 9x² - 6xy + y² =
f) x² + 20x + 100 =
g) a² - 12ab + 36b² =
h) 9 + 24a + 16a² =
i) 64a² - 80a + 25 =
j) a⁴ - 22a² + 121
l) 36 + 12xy +x²y²
m) y⁴ - 2y³ + 1

Trigonometria, Fórmulas Derivadas da Fundamentais

Já sabemos as cinco fórmulas fundamentais da Trigonometria, a saber:
Dado um arco trigonométrico x , temos:
Fórmula I: Relação Fundamental da Trigonometria.
sen2x + cos2x = 1
[o mesmo que (senx)2 + (cosx)2 = 1]
Fórmula II: Tangente.

Fórmula III: Cotangente.

Fórmula IV: Secante.

Fórmula V: Cossecante.

Nota: considere nas fórmulas acima, a impossibilidade absoluta da divisão por ZERO.
Assim, por exemplo, se cosx = 0, não existe a secante de x ; se sen x = 0, não existe a cosec x, ...
Para deduzir duas outras fórmulas muito importantes da Trigonometria, vamos partir da Fórmula I acima, inicialmente dividindo ambos os membros por cos2 x¹ 0.
Teremos:

Das fórmulas anteriores, concluiremos inevitavelmente a seguinte fórmula que relaciona a tangente e a secante de um arco trigonométrico x:
tg2x + 1 = sec2x
Se ao invés de dividirmos por cos2x, dividíssemos ambos os membros por sen2x, chegaríamos a:
cotg2x + 1 = cosec2x
As duas fórmulas anteriores, são muito importantes para a solução de exercícios que comparecem nos vestibulares, e merece por isto, uma memorização. Aliás, as sete fórmulas anteriores, têm necessariamente de ser memorizadas, e isto é apenas o início! A Trigonometria, infelizmente, depende de memorizações de fórmulas, mas, se você souber deduzi-las, como estamos tentando mostrar aqui, as coisas ficarão muito mais fáceis! Portanto, fique tranqüilo(a).

Gineceu


www.youtube.com/accbarroso1
Gineceu

O gineceu constitui os órgãos reprodutores feminino da flor, chamados de pistilo.

O pistilo geralmente é a parte central da flor, e é constituído pelo estigma, estilete e ovário.

O estigma é a parte principal do pistilo, pois é nesta região que ocorre a germinação do pólen e formação do tubo polínico. Como ele é constituído de uma substância pegajosa, adere o pólen com mais facilidade.

O estilete apresenta uma estrutura extensa que liga o ovário ao estigma. É responsável pelo crescimento do tubo polínico. Apesar da sua importância, o estilete é ausente em algumas flores.

O ovário é a área onde estão concentrados todos os óvulos, que carregam a oosfera.

Os óvulos possuem capas protetoras chamadas de primina e secundina. Essa capa possui uma abertura chamada macropólia.

As células-mãe do megásporo estão localizadas no megaesporângio. Tais células sofrem o processo de divisão através da meiose formando quatro células megásporos, sendo que somente uma delas se reproduz.

O núcleo desta célula se divide consecutivamente através da mitose, ocorrendo enfim a germinação do megásporo e a formação do gametófito feminino.

O gametófito feminino está unido a duas células denominadas sinérgides, e protegido pela barreira formada pelo megaesporângio, que passa a se chamar de núcleo.
www.colegioweb.com.br

Feixe de retas paralelas teorema de Tales aula 1