terça-feira, 3 de dezembro de 2019

Fatoração

Fatoração

Quando a gente fatora uma expressão, na verdade, a gente esta transformando
esta expressão em fatores de uma multiplicação. Para conseguirmos isto utilizamos
algumas técnicas tais como:
1. Fator comum em evidência
2. Agrupamento de termos semelhantes
3. Diferença de dois quadrados
4. Trinômio quadrado perfeito.
5. Trinômio do segundo grau.
Achou alguns nomes acima complicados ? Não se preocupe! Vamos ver, a seguir,
um exemplo de cada uma destas técnicas utilizadas para a fatoração de uma expressão.

1. Fator comum em evidência: 12x2 + 4x3 - 8x4

Nesta técnica a gente verifica cada um dos termos, procurando ver se os
coeficientes (o que fica na na frente das variáveis x, y etc), podem ser
divididos por um certo número. Neste caso 12, +4, -8 podem ser divididos
por 4. Então, colocamos o número 4 em evidência, ou seja, antes de um
parênteses, dividimos cada um dos coeficientes por 4 e escrevemos o
resultado no lugar o próprio coeficiente. Veja:
12x2 + 4x3 - 8x4
4 (3x2 + 1x3 - 2x4). Observe que se multiplicarmos o 4 pelos novos coeficientes
3, 1 e -2 iremos ter de volta os coeficientes originais 12, 4 e -8.
Nós escolhemos o 4 para dividir os coeficientes porquê ele é o maior número que
pode dividir cada um dos coeficientes. Não poderíamos ter escolhido, o 8, por exemplo, pois ele é maior que o 4 e não daria para fazer divisão exata, ok ?

1. Fator comum em evidência (Continuação) :

12x2 + 4x3 - 8x4 = 4 (3x2 + 1x3 - 2x4)
Agora precisamos verificar se podemos dividir cada um dos termos que estão dentro
dos parênteses, por um mesmo fator literal (que contém letra). Neste caso podemos
notar que o fator x2 serve para dividir cada uma dos termos da expressão.
Desta forma, escrevemos o x2 antes dos parênteses, ao lado do número 4, e dividimos
cada um dos termos por ele. Veja como fica:
4x2 (3 + 1x - 2x2)
Lembrete: x4 / x3 = x (Divisão de
de mesmba base: repete a base e subtrai
os expoentes.
Observe que se multiplicarmos o 4x2 pelos termos dentro dos parênteses iremos obter
a expressão original 12x2 + 4x3 - 8x4. Desta forma, através da técnica de por o fator
comum em evidência, da fatoração, concluímos que 12x2 + 4x3 - 8x4 = 4x2 (3 + x - 2x2).

2. Agrupamento dos termos semelhantes: xy + xz + ay + az

Esta técnica de fatoração consiste em juntar os termos que são iguais e tentar
colocar algo em evidência como fizemos nos exemplos anteriores. Vejamos:
vamos fatorar xy + xz + ay + az.
Primeiro a gente tenta ver os termos que têm partes iguais. Neste caso o xy e xz
têm algo igual: a letra x e, portanto, a gente pode por o x em evidência, que nem fizemos
no exemplo anterior, e o y e o z dentro dos parênteses. Veja:xy + xz = x(y +z).
Então até agora estamos assim: xy + xz + ay + az = x(y +z) + ay + az.
Segundo, a gente nota também que o ay e o az têm parte comum: a letra a. Então
fazemos a mesma coisa: ay + az = a (y + z). Desta forma a expressão original
xy + xz + ay + az é igual a x(y +z) + a (y + z). Finalmente notamos que (y + z) é
comum a x e a, então fazemos novamente a mesma coisa. Colocamos o (y + z) em
evidência e o x e o a dentro dos parênteses. Veja: (y + z) (x + a). Observe que se
fizermos esta multiplicação obteremos a expressão original pois (y + z) (x + a) = xy + xz + ay + az.

3. Diferença de dois quadrados: x2 - y2

Esta técnica consiste em notar que a expressão, ou parte dela, nada mais é que
o resultado de um produto notável do tipo produto da soma pela diferença.
Neste caso, percebemos que a expressão x2 - y2 é o resultado do desenvolvimento
do produto notável (x + y )( x - y ).
Então ao invés de escrevermos x2 - y2 simplesmente escrevemos os fatores
(x + y )( x - y ) pois x2 - y2 = (x + y )( x - y ).

4. Trinômio quadrado perfeito: x2 +2xy + y2

Assim como o caso anterior, esta técnica consiste em notar que a expressão, ou parte dela,
nada mais é que o resultado de um produto notável do tipo a mais b ao quadrado.
Neste caso, percebemos que a expressão x2 +2xy + y2 é o resultado do desenvolvimento
do produto notável (x + y )2.
Então ao invés de escrevermos x2 +2xy + y2 simplesmente escrevemos (x + y )2 pois
x2 +2xy + y2 = (x + y )2.

5. Trinômio do segundo grau: x2 +7x +12

Nesta última técnica, procuramos identificar na expressão, um trinômio do
segundo grau. No exemplo acima, se observarmos atentamente, notaremos
que -7 é a soma das raízes da equação e 12 é o produto destas raízes.
Lembrete: Numa equação do segundo grau a soma das raízes é dada por
-b/a e o produto é dado por c/a, sabendo-se que neste caso a=1, b=7,
e c=12, fica fácil perceber que a Soma é -7/1=-7 e o Produto é 12/1 = 12.
Agora que sabemos a soma (-7) e o produto (12) calculamos por tentativa,
dois número cuja soma seja -7 e o produto seja 12...é claro que os números
são -3 e -4 pois (-3) + (-4) = -7 e (-3).(-4) = 12. Daí escrevemos os fatores
(x - primeira raiz ).(x - segunda raiz) = (x - (-3).(x - (-4) = (x + 3) (x + 4).
Note que efetuando a multiplicação dos fatores (x + 3) (x + 4) obteremos
a expressão original x2 +7x +12.
Fonte: www.interaula.com

Equações modulares

Sabemos que


Página 3


Uma equação modular é aquela em que a incógnita "aparece dentro do módulo".

Vamos aqui apresentar alguns tipos de equações e suas estratégias de resolução.

Exemplo 1


Página 3


O que queremos aqui é saber qual é o número cujo módulo é igual a 5. Segundo a definição de módulo, esse número pode ser 5 ou -5, pois ambos têm módulo igual a 5.
Assim, podemos dizer que "desmembramos" a equação em duas, para "tirarmos" o módulo.


Página 3


Exemplo 2


Página 3


Da mesma forma, devemos desmembrar a equação.


Página 3


Assim, se voltarmos à igualdade inicial e substituirmos x por -5 ou 3, ela será verdadeira:


Página 3


Exemplo 3


Página 3


Aqui também se desmembra a equação, com o devido cuidado quanto ao sinal da expressão do segundo membro da igualdade.

resolução.

Exemplo 1


Página 3


O que queremos aqui é saber qual é o número cujo módulo é igual a 5. Segundo a definição de módulo, esse número pode ser 5 ou -5, pois ambos têm módulo igual a 5.
Assim, podemos dizer que "desmembramos" a equação em duas, para "tirarmos" o módulo.


Página 3


Exemplo 2


Página 3


Da mesma forma, devemos desmembrar a equação.


Página 3


Assim, se voltarmos à igualdade inicial e substituirmos x por -5 ou 3, ela será verdadeira:


Página 3


Exemplo 3


Página 3


Logo, 0 e 2 são os valores que verificam as igualdades, quando colocados no lugar de x.

Exemplo 4


Página 3


Nesse caso, queremos saber qual o valor de x para que a expressão tenha módulo igual a -5. Pela definição, sabemos que o módulo não pode ser igual a um número negativo. Logo, não existe tal valor de x.
Portanto, .

Exemplo 5


Página 3



Página 3


Exemplo 6


Página 3


É bom lembrarmos uma das propriedades do módulo, segundo a qual .

Logo, a equação pode ser reescrita da seguinte forma: .

Agora, basta usar a técnica da substituição para facilitar a resolução.


Página 3



Página 3


Mas ainda não encontramos a solução da equação. Devemos voltar à substituição feita anteriormente.


Página 3


Portanto, o conjunto solução da equação é .

Exemplo 7


Página 3


Se, para eliminar cada módulo, desmembrarmos em dois casos, teremos quatro equações, porém com dois pares de equações repetidas. Assim, para facilitarmos a resolução, consideraremos dois casos:


Página 3
*Michele Viana Debus de França é licenciada em matemática pela USP e mestre em educação matemática pela PUC-SP.

Equação de 2º grau Aula 6

História da àlgebra

Fonte: Tópicos de História da Matemática - John K. Baumgart



Estranha e intrigante é a origem da palavra "álgebra". Ela não se sujeita a uma etimologia nítida como, por exemplo, a palavra "aritmética", que deriva do grego arithmos ("número"). Álgebra é uma variante latina da palavra árabe al-jabr (às vezes transliterada al-jebr), usada no título de um livro, Hisab al-jabr w'al-muqabalah, escrito em Bagdá por volta do ano 825 pelo matemático árabe Mohammed ibn-Musa al Khowarizmi (Maomé, filho de Moisés, de Khowarizm). Este trabalho de álgebra é com frequência citado, abreviadamente, como Al-jabr.


Uma tradução literal do título completo do livro é a "ciência da restauração (ou reunião) e redução", mas matematicamente seria melhor "ciência da transposição e cancelamento"- ou, conforme Boher, "a transposição de termos subtraídos para o outro membro da equação" e "o cancelamento de termos semelhantes (iguais) em membros opostos da equação". Assim, dada a equação:


x2 + 5x + 4 = 4 - 2x + 5x3

al-jabr fornece
x2 + 7x + 4 = 4 + 5x3

e al-muqabalah fornece
x2 + 7x = 5x3

Talvez a melhor tradução fosse simplesmente "a ciência das equações".
Ainda que originalmente "álgebra" refira-se a equações, a palavra hoje tem um significado muito mais amplo, e uma definição satisfatória requer um enfoque em duas fases:
(1) Álgebra antiga (elementar) é o estudo das equações e métodos de resolvê-las.
(2) Álgebra moderna (abstrata) é o estudo das estruturas matemáticas tais como grupos, anéis e corpos - para mencionar apenas algumas.
De fato, é conveniente traçar o desenvolvimento da álgebra em termos dessas duas fases, uma vez que a divisão é tanto cronológica como conceitual.


--------------------------------------------------------------------------------

Equações algébricas e notação


A fase antiga (elementar), que abrange o período de 1700 a.C. a 1700 d.C., aproximadamente, caracterizou-se pela invenção gradual do simbolismo e pela resolução de equações (em geral coeficientes numéricos) por vários métodos, apresentando progressos pouco importantes até a resolução "geral" das equações cúbicas e quárticas e o inspirado tratamento das equações polinomiais em geral feito por François Viète, também conhecido por Vieta (1540-1603).


O desenvolvimento da notação algébrica evoluiu ao longo de três estágios: o retórico (ou verbal), o sincopado (no qual eram usadas abreviações de palavras) e o simbólico. No último estágio, a notação passou por várias modificações e mudanças, até tornar-se razoavelmente estável ao tempo de Isaac Newton. É interessante notar que, mesmo hoje, não há total uniformidade no uso de símbolos. Por exemplo, os americanos escrevem "3.1416" como aproximação de Pi, e muitos europeus escrevem "3,1416". Em alguns países europeus, o símbolo "÷" significa "menos". Como a álgebra provavelmente se originou na Babilônia, parece apropriado ilustrar o estilo retórico com um exemplo daquela região. O problema seguinte mostra o relativo grau de sofisticação da álgebra babilônica. É um exemplo típico de problemas encontrados em escrita cuneiforme, em tábuas de argila que remontam ao tempo do rei Hammurabi. A explanação, naturalmente, é feita em português; e usa-se a notação decimal indo-arábica em vez da notação sexagesimal cuneiforme. A coluna à direita fornece as passagens correspondentes em notação moderna. Eis o exemplo:


[1] Comprimento, largura. Multipliquei comprimento por largura, obtendo assim a área: 252. Somei comprimento e largura: 32. Pede-se: comprimento e largura.



[2] [Dado] 32 soma; 252 área. x+y=k
xy=P } ... (A)

[3] [Resposta] 18 comprimento; 14 largura.
[4] Segue-se este método: Tome metade de 32 [que é 16]. k/2
16 x 16 = 256 (k/2)2
256 - 252 = 4 (k/2)2 - P = t2 } ... (B)
A raiz quadrada de 4 é 2.
16 + 2 = 18 comprimento. (k/2) + t = x.
16 - 2 = 14 largura (k/2) - t = y.
[5] [Prova] Multipliquei 18 comprimento por 14 largura.
18 x 14 = 252 área
((k/2)+t) ((k/2)-t)
= (k2/4) - t2 = P = xy.




Nota-se que na etapa [1] o problema é formulado, na [2] os dados são apresentados, na [3] a resposta é dada, na [4] o método de solução é explicado com números e, finalmente, na [5] a resposta é testada.

A "receita" acima é usada repetidamente em problemas semelhantes. Ela tem significado histórico e interesse atual por várias razões.



Antes de tudo não é a maneira como resolveríamos hoje o sistema (A). O procedimento padrão nos atuais textos escolares de álgebra é resolver, digamos, a primeira equação para y (em termos de x), substituir na segunda equação e, então, resolver a equação quadrática resultante em x; isto é, usaríamos o método de substituição. Os babilônios também sabiam resolver sistemas por substituição, mas frequentemente preferiam usar seu método paramétrico. Ou seja, usando-se notação moderna, eles concebiam x e y em termos de uma nova incógnita (ou parâmetro) t fazendo x=(k/2)+t e y=(k/2)-t.



Então o produto

xy = ((k/2) + t) ((k/2) - t) = (k/2)2 - t2 = P

levava-os à relação (B):

(k/2)2 - P = t2



Em segundo lugar, o problema acima tem significado histórico porque a álgebra grega (geométrica) dos pitagóricos e de Euclides seguia o mesmo método de solução - traduzida, entretanto, em termos de segmentos de retas e áreas e ilustrada por figuras geométricas. Alguns séculos depois, outro grego, Diofanto, também usou a abordagem paramétrica em seu trabalho com equações "diofantinas". Ele deu início ao simbolismo moderno introduzindo abreviações de palavras e evitando o estilo um tanto intrincado da álgebra geométrica.

Em terceiro lugar, os matemáticos árabes (inclusive al-Khowarizmi) não usavam o método empregado no problema acima; preferiam eliminar uma das incógnitas por substituição e expressar tudo em termos de palavras e números.

Antes de deixar a álgebra babilônica, notemos que eles eram capazes de resolver uma variedade surpreendente de equações, inclusive certos tipos especiais de cúbicas e quárticas - todas com coeficientes numéricos, naturalmente.


--------------------------------------------------------------------------------

Álgebra no Egito


A álgebra surgiu no Egito quase ao mesmo tempo que na Babilônia; mas faltavam à álgebra egípcia os métodos sofisticados da álgebra babilônica, bem como a variedade de equações resolvidas, a julgar pelo Papiro Moscou e o Papiro Rhind - documentos egípcios que datam de cerca de 1850 a.C. e 1650 a.C., respectivamente, mas refletem métodos matemáticos de um período anterior. Para equações lineares, os egípcios usavam um método de resolução consistindo em uma estimativa inicial seguida de uma correção final - um método ao qual os europeus posteriormente deram o nome umtanto abstruso de "regra da falsa posição". A álgebra do Egito, como a da Babilônia, era retórica.

O sistema de numeração egípcio, relativamente primitivo em comparação com o dos babilônios, ajuda a explicar a falta de sofisticação da álgebra egípcia. Os matemáticos europeus do século XVI tiveram de estender a noção indo-arábica de número antes de poderem avançar significativamente além dos resultados babilônios de resolução de equações.


--------------------------------------------------------------------------------

Álgebra geométrica grega


A álgebra grega conforme foi formulada pelos pitagóricos e por Euclides era geométrica. Por exemplo, o que nós escrevemos como:

(a+b)2 = a2 + 2ab + b2

era concebido pelos gregos em termos do diagrama apresentado na Figura 1 e era curiosamente enunciado por Euclides em Elementos, livro II, proposição 4:

Se uma linha reta é dividida em duas partes quaisquer, o quadrado sobre a linha toda é igual aos quadrados sobre as duas partes, junto com duas vezes o retângulo que as partes contém. [Isto é, (a+b)2 = a2 + 2ab + b2.]

Somos tentados a dizer que, para os gregos da época de Euclides, a2 era realmente um quadrado.

Não há dúvida de que os pitagóricos conheciam bem a álgebra babilônica e, de fato, seguiam os métodos-padrão babilônios de resolução de equações. Euclides deixou registrados esses resultados pitagóricos. Para ilustrá-lo, escolhemos o teorema correspondente ao problema babilônio considerado acima.







Do livro VI dos Elementos, temos a proposição 28 (uma versão simplificada):

Dada uma linha reta AB [isto é, x+y=k], construir ao longo dessa linha um retângulo com uma dada área [xy = P], admitindo que o retângulo "fique aquém" em AB por uma quantidade "preenchida" por outro retângulo [o quadrado BF na Figura 2], semelhante a um dado retângulo [que aqui nós admitimos ser qualquer quadrado].







Na solução desta construção solicitada (Fig.2) o trabalho de Euclides é quase exatamente paralelo à solução babilônica do problema equivalente. Conforme indicado por T.L.Heath / EUCLID: II, 263/, os passos são os seguintes:



Bissecte AB em M: k/2
Construa o quadrado MBCD: (k/2)2
Usando VI, 25, construa o quadrado DEFG com área igual ao excesso de MBCD sobre a área dada P: t2 = (k/2)2 - P
Então é claro que y = (k/2) - t



Como fazia frequentemente, Euclides deixou o outro caso para o estudante - neste caso, x=(k/2)+t, o que Euclides certamente percebeu mas não formulou.

É de fato notável que a maior parte dos problemas-padrão babilônicos tenham sido "refeitos" desse modo por Euclides. Mas por quê? O que levou os gregos a darem à sua álgebra esta formulação desajeitada? A resposta é básica: eles tinham dificuldades conceituais com frações e números irracionais.



Mesmo que os matemáticos gregos fossem capazes de contornar as frações, tratando-as como razões de inteiros, eles tinham dificuldades insuperáveis com números como a raiz quadrada de 2, por exemplo. Lembramos o "escândalo lógico" dos pitagóricos quando descobriram que a diagonal de um quadrado unitário é incomensurável com o lado (ou seja, diag/lado é diferente da razão de dois inteiros).

Assim, foi seu estrito rigor matemático que os forçou a usar um conjunto de segmentos de reta como domínio conveniente de elementos. Pois, ainda que raiz quadrada de 2 não possa ser expresso em termos de inteiros ou suas razões, pode ser representado como um segmento de reta que é precisamente a diagonal do quadrado unitário. Talvez não seja apenas um gracejo dizer que o contínuo linear era literalmente linear.



De passagem devemos mencionar Apolônio (c. 225 a.C.), que aplicou métodos geométricos ao estudo das secções cônicas. De fato, seu grande tratado Secções cônicas contém mais geometria analítica das cônicas - toda fraseada em terminologia geométrica - do que os cursos universitários de hoje.

A matemática grega deu uma parada brusca. A ocupação romana tinha começado, e não encorajava a erudição matemática, ainda que estimulasse alguns outros ramos da cultura grega. Devido ao estilo pesado da álgebra geométrica, esta não poderia sobreviver somente na tradição escrita; necessitava de um meio de comunicação vivo, oral. Era possível seguir o fluxo de idéias desde que um instrutor apontasse para diagramas e explicasse; mas as escolas de instrução direta não sobreviveram.


--------------------------------------------------------------------------------

Álgebra na Europa
A álgebra que entrou na Europa (via Liber abaci de Fibonacci e traduções) havia regredido tanto em estilo como em conteúdo. O semi-simbolismo (sincopação) de Diofanto e Brahmagupta e suas realizações relativamente avançadas não estavam destinados a contribuir para uma eventual irrupção da álgebra.

A renascença e o rápido florescimento da álgebra na Europa foram devidos aos seguintes fatores:

facilidade de manipular trabalhos numéricos através do sistema de numeração indo-arábico, muito superior aos sistemas (tais como o romano) que requeriam o uso do ábaco;

invenção da imprensa com tipos móveis, que acelerou a padronização do simbolismo mediante a melhoria das comunicações, baseada em ampla distribuição;

ressurgimento da economia, sustentando a atividade intelectual; e a retomada do comércio e viagens, facilitando o intercâmbio de idéias tanto quanto de bens.

Cidades comercialmente fortes surgiram primeiro na Itália, e foi lá que o renascimento algébrico na Europa efetivamente teve início.



Antonio Carlos Carneiro Barroso

numeros naturais

Equação modular

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com        


Utilizando a definição de módulo que diz:

| x | = x, se x for maior ou igual a zero.
| x | = – x, se x for menor que zero.

Podemos resolver equações modulares, uma vez que:

Se | x | = k, então x = k ou x = – k.

Exemplo 1. Resolva a equação | 2x – 5 | = 7.
Solução: Da definição de módulo, temos que:
2x – 5 = 7 ou 2x – 5 = – 7
2x = 7 + 5 2x = – 7 + 5
2x = 12 2x = – 2
x = 6 x = – 1
Portanto, S = {– 1, 6}

Exemplo 2. Resolva a equação |x2 + 4x + 5| = 5
Solução: Temos que
x2 + 4x + 5 = 5 ou x2 + 4x + 5 = – 5
x2 + 4x + 5 – 5 = 0 x2 + 4x + 5 + 5 = 0
x2 + 4x = 0 x2 + 4x + 10 = 0
x(x + 4) = 0 Δ = 16 – 40 = – 24
x = 0 ou x = – 4 não possui solução real, pois Δ < 0
Portanto, S = {– 4, 0}

Exemplo 3. Determine o conjunto solução da equação:
| x |2 – 8| x | – 9 = 0

Solução: Nesse caso, devemos fazer uma mudança de variável.
| x | = y
Substituindo na equação inicial, obtemos:
y2 – 8y – 9 = 0
Δ = (– 8)2 – 4*1*(– 9) = 64 + 36 = 100
y = 9 ou y = – 1
Daí, temos que:
| x | = 9 → x = 9 ou x = – 9
| x | = – 1 → não faz sentido, uma vez que o módulo de um número é sempre um valor positivo.
Portanto, S = { - 9, 9}
www.bancodeconcursos.com

Razões trigonométricas de 30º,60º e45º


Gráfico de Inequações do 1º Grau

Professor de Matemática Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
Diferente das equações, as inequações são expressões matemáticas que apresentam em sua configuração sinais de desigualdade. Veja:

>: maior que
<: menor que
≥: maior ou igual que
≤: menor ou igual que


As inequações são utilizadas em cálculos envolvendo restrições ao valor da incógnita. Por exemplo, ao resolvermos a equação 2x + 5 > 11, descobrimos que seu valor é correspondente a x > 3, de modo a respeitar a condição da inequação.

Os sinais de desigualdade podem ser utilizados em qualquer expressão matemática envolvendo incógnitas, como funções do 1º grau, do 2º grau, exponenciais, logarítmicas, trigonométricas, modulares.

As inequações também possuem gráficos representados no plano cartesiano. Na construção deles devemos levar em consideração o sinal da desigualdade.

Exemplo 1
Vamos determinar a construção do gráfico da seguinte expressão: 2x + 4 ≤ 0.

y = 0
2x + 4 ≤ 0
2x ≤ – 4
x ≤ –2

Gráfico




Exemplo 2

Construir o gráfico da inequação x + 4 ≥ 0, de acordo com a raiz da função.

y = 0
x + 4 ≥ 0
x ≥ – 4

Gráfico


Exemplo 3
Determinando o gráfico da inequação –2x + 7 > 0.

–2x + 7 > 0
–2x > –7
x < –7/2
x < –3,5
Gráfico

Marcos Noé Pedro da Silva

Sistemas e Equações Lineares

Equações Lineares
As equações do tipo a1x1 + a2x2 + a3x3 + .....+ anxn = b, são equações lineares, onde a1, a2, a3, ... são os coeficientes; x1, x2, x3,... as incógnitas e b o termo independente.
A equação 4x – 3y + 5z = 31 é uma equação linear. Os coeficientes são 4, –3 e 5; x, y e z as incógnitas e 31 o termo independente.
Para x = 2, y = 4 e z = 7, temos 4*2 – 3*4 + 5*7 = 31, concluímos que o terno ordenado (2,4,7) é solução da equação linear
4x – 3y + 5z = 31.

Para x = 1, y = 0 e z = 3, temos 4*1 – 3*0 + 5*3 ≠ 31, concluímos que o terno ordenado (1,0,3) não é solução da equação linear
4x – 3y + 5z = 31.
www.mundoeducacao.com.br

Sistemas Lineares

Dizemos que o conjunto de equações lineares forma um sistema linear.

Exemplos

2x + 3y = 10
x – 5y = 2
Sistema linear com duas equações e duas incógnitas.

5x – 6y – 2z = 15
9x – 10y + 5z = 20
Sistema linear com duas equações e três incógnitas.

x + 9y + 6z = 20
3x – 10y – 12z = 5
-x + y + z = 23
Sistema linear com três equações e três incógnitas.

x+ y + z + w = 36
2x – y +2z + 9w = 40
-5x + 3y – 5z + 5w = 16
Sistema linear com três equações e quatro incógnitas.

O sistema linear abaixo admite o terno ordenado (1, 2, 3) como solução.

x + 2y – z = 2
2x – y + z = 3
x + y + z = 6

1 + 2*2 – 3 = 2 → 1+ 4 – 3 = 2 → 2 = 2
2*1 – 2 + 3 = 3 → 2 – 2 + 3 = 2 → 3 = 3
1 + 2 + 3 = 6 → 6 = 6


No entanto, ele não admite como solução o terno ordenado (1, 2, 4).
1 + 2*2 – 3 = 2 → 1+ 4 – 3 = 2 → 2 = 2
2*1 – 2 + 3 = 3 → 2 – 2 + 3 = 2 → 3 = 3
1 + 2 + 4 = 6 → 7 ≠ 6

Fatoração

As fatorações são utilizadas no intuito de transformar expressões e equações algébricas em procedimentos envolvendo o produto de duas ou mais expressões. Dessa forma, em algumas situações, as equações podem ser resolvidas de forma simples e direta. Para a realização da fatoração simultânea, o conhecimento das técnicas envolvendo termo comum em evidência, agrupamento, diferença entre dois quadrados, trinômio quadrado perfeito e trinômio soma e produto, é de extrema importância. Em alguns polinômios, a fatoração por completo exige a utilização de duas ou mais técnicas informadas.

Observe alguns exemplos envolvendo a utilização da fatoração simultânea:


Exemplo 1

x³ + 2x² + x
1ª fatoração: fator comum em evidência
x * (x² + 2x + 1)
2ª fatoração: trinômio quadrado perfeito
x * (x + 1)²

x³ + 2x² + x → x * (x + 1)²


Exemplo 2

a²x – b²x
1ª fatoração: fator comum em evidência
x * (a² – b²)
2ª fatoração: diferença entre dois quadrados
x * (a + b) * (a – b)

a²x – b²x → x * (a + b) * (a – b)



Exemplo 3

x²b + 5bx + 6b
1ª fatoração: fator comum em evidência
b * (x² + 5x + 6)
2ª fatoração: trinômio soma e produto
b * (x + 2) * (x + 3)

x²b + 5bx + 6b → b * (x + 2) * (x + 3)


Exemplo 4

4x³ + 3x² – 4y²x – 3y²
1ª fatoração: agrupamento
x² * (4x + 3) – y² * (4x + 3)
(x² – y²) * (4x + 3)
2ª fatoração: diferença entre dois quadrados
(x + y) * (x – y) * (4x + 3)

4x³ + 3x² – 4y²x – 3y² → (x + y) * (x – y) * (4x + 3)



Exemplo 5

a³ – a
1ª fatoração: fator em evidência
a * (a² – a)
2ª fatoração: diferença entre dois quadrados
a * (a + 1 ) * (a – 1)

a³ – a → a * (a + 1 ) * (a – 1)



Exemplo 6

12x³ – 3xy²
1ª fatoração: fator em evidência
3x * (4x² – y²)
2ª fatoração: agrupamento
3x * (2x – y) * (2x + y)

12x³ – 3xy² → 3x * (2x – y) * (2x + y)
Fatorar é o mesmo que decompor o número em fatores primos, isto é, escrever um número através da multiplicação de números primos. Na fatoração utilizamos os números primos obedecendo a uma ordem crescente de acordo com as regras de divisibilidade em razão do termo a ser fatorado. Números primos são aqueles que podem ser divididos somente por um e por ele mesmo. Observe a decomposição em fatores primos dos números a seguir:

24 = 2 x 2 x 2 x 3
10 = 2 x 5
52 = 2 x 2 x 13
112 = 2 x 2 x 2 x 2 x 7
600 = 2 x 2 x 2 x 3 x 5 x 5

Forma prática de fatoração

O número a ser fatorado deverá ocupar a coluna da esquerda e a coluna da direita será preenchida com os fatores primos. Ao dividir o número pelo algarismo primo os resultados deverão ser colocados na coluna da direita. As divisões deverão ser efetuadas no intuito de simplificar ao máximo o número, isto é reduzi-lo ao número 1.



Objetivos da fatoração

Cálculo da raiz quadrada de um número.

Vamos determinar a raiz quadrada do número 144.

De acordo com a fatoração do número 144 temos: 2 x 2 x 2 x 2 x 3 x 3.
No caso da raiz quadrada, podemos representar o número 144 da seguinte forma:
2² x 2² x 3². Como o índice da raiz quadrada é 2, podemos simplificar os expoentes de valor 2 com o índice 2 da raiz. As bases dos expoentes simplificados saem da raiz multiplicadas entre si. Acompanhe a demonstração a seguir:

Dado dois números quaisquer x e y. Se subtrairmos ficará: x – y, se montarmos uma expressão algébrica com os dois números obteremos: x2 + xy + y2, assim, devemos multiplicar as duas expressões encontradas.

(x - y) (x2 + xy + y2) é necessário utilizar a propriedade distributiva;

x3 + x2y + xy2 - x2y –xy2 - y3 unir os termos semelhantes;

x3 - y3 é uma expressão algébrica de dois termos, os dois estão elevados ao cubo e subtraídos.

Assim, podemos concluir que x3 - y3 é uma forma geral da soma de dois cubos onde
x e y podem assumir qualquer valor real.

A forma fatorada de x3 - y3 será (x - y) (x2 + xy + y2).

Com o conhecimento de todos os casos de fatoração, quando for preciso fatorar alguma expressão algébrica devemos sempre observar em qual dos casos ela se enquadra, veja os exemplos de como fazer esse reconhecimento.

Exemplo:
Se tivermos que fatorar a seguinte expressão algébrica 27x3 – y3 devemos observar que ela tem dois termos. Lembrando dos casos de fatoração, o único caso que fatora dois termos é a diferença de dois quadrados, soma de dois cubos e a diferença de dois cubos.

No exemplo acima os dois termos estão ao cubo e entre eles há uma subtração, então devemos utilizar o 7º caso de fatoração (diferença de dois cubos), para fatorarmos devemos escrever a expressão algébrica 27x3 – y3 da seguinte forma:
(x - y) (x2 + xy + y2). Ao tirar as raízes cúbicas dos dois termos, temos: 27x3 – y3.

A raiz cúbica de 27x3 é 3x e a raiz cúbica de y3 é y. Agora, basta substituir valores, no lugar de x colocaremos 2x e no lugar de y colocaremos 3 na forma fatorada
(x - y) (x2 + xy + y2) , ficando assim:

(3x – y) ((3x)2 + 3x . y + y2)

(3x – y) (9x2 + 3xy + y2)

Então, (2x – 3) (4x2 + 6x + 9) é a forma fatorada da expressão algébrica 8x3 – 27.

Exemplo 2
Para resolvemos a fatoração utilizando a diferença de dois cubos devemos seguir os mesmos passos do exemplo anterior. Fatorando a expressão algébrica r3 – 64 temos: As raízes cúbicas de r3 é r e de 64 é 4, substituindo teremos no lugar de x o r e no lugar de y o 4.

(r – 4) (r2 + 4r + 16) é a forma fatorada de r3 – 64.

Dado dois números quaisquer x e y, se somarmos os dois obteremos x + y, se montarmos uma expressão algébrica com os dois números teremos x2 - xy + y2, agora devemos multiplicar as duas expressões encontradas.

(x + y) (x2 - xy + y2) utilize a propriedade distributiva;

x3 - x2y + xy2 + x2y –xy2 + y3 una os termos semelhantes;

x3 + y3 é uma expressão algébrica de dois termos onde os dois estão elevados ao cubo e somados.

Assim, podemos concluir que x3 + y3 é uma forma geral da soma de dois cubos onde
x e y poderão assumir qualquer valor real.

A forma fatorada de x3 + y3 será (x + y) (x2 - xy + y2).

Veja alguns exemplos:

Exemplo1:
27x3 + 1000 é a soma de dois cubos.

Podemos escrever essa expressão da seguinte forma:

33x3 + 103, assim: x = 3x e y = 10
Agora, basta usarmos a forma geral e fazermos as substituições.

(x + y) (x2 - xy + y2)
(3x + 10) ((3x)2 – 3x . 10 + 102)
(3x + 10) (9x2 – 30x + 100)

Portanto, a fatoração de 27x3 + 1000 será (3x + 10) (9x2 – 30x + 100).

Exemplo 2:
x3 + 1 é a soma de dois cubos.
Podemos escrever essa expressão da seguinte forma:

(x)3 + 13 assim: x = x e y = 1
Agora, basta usarmos a forma gral e fazermos as substituições.

(x + y) (x2 - xy + y2)

(x + 1) ((x)2 –x .1 + 12)

(x – 1) (x2 –x + 1)

Exemplo 3:
8x3 + y3 é a soma de dois cubos.
Podemos escrever essa expressão da seguinte forma:

(2x)3 + y3 assim: x = 2x e y = y
Agora, basta usarmos a forma gral e fazermos as substituições.

(x + y) (x2 - xy + y2)

(2x + y) ((2x)2 – 2xy + y2)

(2x + y) (4x2 – 2xy + y2)
Para fatorar uma expressão algébrica utilizando esse primeiro caso de fatoração, todos os monômios da expressão algébrica devem ter pelo menos algum termo em comum.
A fatoração é feita colocando o termo comum em evidência, veja alguns exemplos:

►a – ab é uma expressão algébrica, veja como devemos fatorar:

É preciso analisar se o 1º caso poderá ser utilizado para a fatoração, então é necessário analisar todos os seus monômios (termos) para ver se há termos em comum.

a – ab essa expressão tem dois monômios a e ab
Os dois possuem termos semelhantes: o termo semelhante é a. Então, colocamos esse termo comum em evidência.

Quando colocamos a em evidência devemos dividir a e ab (os monômios) por a (termo comum), assim:

a : a = 1, pois todo número (ou letra) dividido por ele mesmo é igual a 1.

ab : a = b, pois a : a = 1, então ficaria 1b que é o mesmo que b.

Portanto a – ab = a (1 – b)

Termos
em evidência

►a3 – 4a2 é uma expressão algébrica, veja como fatorar:

Essa expressão algébrica tem 2 monômios a3 e 4a2, eles têm o a como termo semelhante, então podemos colocá-lo em evidência, mas poderá surgir uma dúvida, devemos colocar o a3 ou a2? Devemos colocar sempre o de menor expoente, então colocamos a2.

Assim, devemos dividir a3 e 4a2 por a2, assim:

a3 : a2 = a, pois a3 = a .a .a, então a . a . a : a2 é o mesmo que 1a = a.

4a2 : a2 = 4, pois a2 : a2 = 1, então ficaria 4 . 1 que é mesmo que 4.

Portanto a3 – 4a2 = a2 (a – 4).

Termos
em evidência


►x4 - 2x3 + x2 + x é uma expressão algébrica que tem quatro monômios, eles têm termos em comum, como esses termos têm mesma base devemos pegar o de menor expoente, então o termo em comum é x.

O termo em evidência deverá ser dividido pelos monômios x4 , 2x2 , x2 e x, assim:

x4 : x = x3, pois em bases iguais conservamos a base e diminuímos os expoentes.

2x3 : x = 2x2, pois em bases iguais conservamos a base e diminuímos os expoentes.

x2 : x = x, pois em bases iguais conservamos a base e diminuímos os expoentes.

x : x = 1, pois qualquer número ou letra dividido por ele mesmo é igual a 1.

Portanto x4 - 2x3 + x2 + x = x (x3 – 2x2 + x – 1).

Termos
em evidência

► 4r + 12 é uma expressão algébrica, olhando rapidamente podemos pensar que não existe termo semelhante, o que seria errado, pois o número 12 pode ser fatorado em dois fatores 12 = 4 . 3, com essa fatoração percebemos que há um termo em comum na expressão algébrica, esse é o 4.

Então, pegamos os monômios 4r e 12 e dividimos por 4, ficando assim:

4r : 4 = 1r ou r

12 : 4 = 3

Portanto, 4r + 12 = 4 (r + 3)

Termos
em evidência

► Para fatorarmos a expressão algébrica (x + 1) (x – 3) + 2 (x + 1) devemos ter um pouco mais de cuidado, pois em primeiro lugar separamos os termos:

(x + 1) (x – 3) + 2 (x + 1) a expressão possui dois termos.
↓ ↓
1º termo 2º termo

O termo semelhante é (x + 1), pois é encontrado tanto no 1º termo, como no 2º.

Então, devemos dividir o 1º termo e o 2º por (x + 1), ficando assim:

[(x + 1) (x – 3)] : (x + 1) = (x – 3)

2 (x + 1) : (x + 1) = 2

Portanto, (x + 1) (x – 3) + 2 (x + 1) = (x + 1) (x – 3 + 2)
(x + 1) (x – 3) + 2 (x + 1) = (x + 1) (x – 1)

Termos
em evidência

Para conferir se as fatorações estão corretas, basta efetuar as fatorações, veja:

Para verificar se a fatoração 4r + 12 = 4 (r + 3) está correta, basta pegar a expressão algébrica fatorada 4 (r + 3) e resolvê-la:

Aplicando a propriedade distributiva temos: 4 (r + 3) = 4 . r + 4 . 3 = 4r + 12. Podemos concluir que a fatoração está correta.

Quando aplicamos o caso de fatoração por agrupamento, utilizamos a fatoração por termos comuns. Veja:

Se observarmos a expressão ab + 3b + 7a + 21 veremos que não são todos os monômios que têm termos semelhantes, mas podemos unir os que possuem termos semelhantes.

Assim, temos: ab + 3b + 7a + 21, agora aplicamos o 1º caso de fatoração (termo comum), colocando em evidência cada elemento comum de cada agrupamento.

ab + 3b + 7a + 21
↓ ↓
b termo 7 é o termo comum
comum

Então: b (a + 3) + 7 (a + 3)

Mesmo fazendo essa fatoração observamos que ainda podemos fazer mais uma fatoração, pois os dois termos b (a + 3) e 7 (a + 3) possuem um termo em comum
(a + 3). Então, aplicamos o processo do fator comum, ficando assim a fatoração:

b (a + 3) + 7 (a + 3)
(a + 3) (b + 7)

Portanto, a expressão algébrica ab + 3b + 7a + 21 fatorada fica assim: (a + 3) (b + 7).

Dada a expressão algébrica y2 – 5y + 6, sabemos que é um trinômio, mas os seus dois membros das extremidades não estão elevados ao quadrado, assim descarta a possibilidade de ser quadrado perfeito.

Então, o único caso de fatoração que podemos utilizar para fatorar essa expressão algébrica é x2 + Sx + P. Dada a expressão y2 – 5y + 6, observe se ela está em ordem decrescente de seus expoentes (do maior para o menor), se estiver basta achar dois números que somados resultem em -5 e que o produto deles resulte em 6.

Vamos fazer as tentativas para que o produto resulte em 6:
2 . 3 = 6

(- 2) . (- 3) = 6

6 . 1= 6

- 6 . (- 1) = 6

Devemos, dentre essas possibilidades, achar uma que a soma dos números dê -5. Concluímos que -2 + (-3) = -5, portanto a forma fatorada desse trinômio será:

(y – 2) (y – 3).

Dada a expressão m2 + 7m – 8, devemos achar dois números que somados resulte 7 e o produto deles seja -8. Verificamos as possibilidades do produto resultar em - 8:
- 1 . 8 = - 8

1 . (-8) = - 8

4 . (- 2) = - 8

- 4 . 2 = - 8

Devemos, dentre essas possibilidades, achar uma que a soma dos números dê 7. Concluímos que -1 + 8 = 7, portanto a forma fatorada desse trinômio será:

(m – 1) (m + 8).

Dado a expressão x2 + 4x – 12, devemos achar dois números que somados resulte em 4 e o produto do mesmo seja – 12. Verifiquemos as possibilidades de o produto resultar em -12:

1 .(-12) = -12

-1 . 12 = -12

6 . (-2) = -12

- 6 . 2 = -12

Devemos, dentre essas possibilidades, achar uma que a soma dos números dê 4. Concluímos que 6 +(- 2) = 4, portanto a forma fatorada desse trinômio será:

(x + 6) (x – 2)
Esse caso de fatoração só pode ser utilizado em expressões algébricas que possuem dois monômios e os mesmos devem estar elevados ao quadrado (elevados à quinta potência).

Chegamos à conclusão que a diferença de dois quadrados pode ser utilizada, quando:

-Tivermos uma expressão algébrica com dois monômios (sejam binômios).
- Os dois monômios forem quadrados.
- A operação entre eles for de subtração.

Veja alguns exemplos de expressões algébricas que seguem esse modelo:


• a2 - 16

• 1 – a2
3

• 4x2 – b2


Como fazer essa fatoração

Dada a expressão algébrica 9x2 – 81, veja os passos que devemos tomar para chegarmos à forma fatorada utilizando o 5º caso de fatoração.


A forma fatorada será (3x – 9) (3x + 9).

Veja alguns exemplos:

Exemplo 1:
A expressão algébrica x2 – 4 é uma expressão com dois monômios e as raízes quadradas são respectivamente x e 2, então a sua forma fatorada é (x – 2) (x + 2).


Exemplo 2:
Dada a expressão algébrica 16x2 – 25, a raiz dos termos 16x2 e 25 é respectivamente 4x e 5. Então, a forma fatorada é (4x – 5) (4x + 5).

Exemplo 3:
Dada a expressão algébrica 36x2 – 81y2, a raiz dos termos 36x2 e 81y2 é respectivamente 6x e 9y. Então, a forma fatorada é (6x – 9y) (6x + 9y).
Fonte mundoeducacao.com.br

segunda-feira, 2 de dezembro de 2019

Taxonomia Como funciona o sistema de classificação dos seres vivos


Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
www.youtube.com/accbarroso1 

O gorila também pertence à família dos hominidae como os seres humanos
Imagine todos os seres vivos do planeta, tanto animais como vegetais. Agora, tente pensar em uma denominação para cada um deles, de forma que seus nomes os agrupe conforme suas características em comum. Difícil, não é? Mas é exatamente isso que um ramo da biologia faz. Existem pessoas que trabalham apenas para identificar e nomear espécies - os botânicos (no caso das plantas) e os zoólogos (no caso dos animais) e são chamados sistematas.

É muito importante para a ciência que todos os seres vivos sejam identificados, ou não seria possível estudá-los. A ciência agrupa os seres vivos conforme as características que eles apresentam em comum. Como num jogo de encaixar, cada grupo possui um subgrupo, o qual possui outro subgrupo, e a cada divisão as similaridades ficam cada vez mais acentuadas.

Por exemplo, no reino animal estão todos os animais. Nele, há diversos subgrupos que unem os animais que têm mais coisas em comum, como o dos mamíferos, que engloba apenas animais que mamam. A partir daí, há mais subgrupos, como os que são gerados em placenta (placentários) e que são a maioria, ou os que colocam ovos - esse é o caso dos ornitorrincos.

Ordem decrescente
A classificação básica dos seres vivos é, em ordem decrescente: reino, filo, classe, ordem, família, gênero, e espécie. Em muitos casos, há tantas especializações que esta classificação não é suficiente. Por isso foram criadas algumas subdivisões dentro de ordem, classe, e espécie. No caso do grupo "classe", encontra-se a superclasse (que fica um grau acima da classe) e a infraclasse (que fica um grau abaixo da classe). Da mesma maneira ocorre com o grupo da ordem: existie a superordem e a infraordem. No grupo de espécies, encontra-se a subespécie.

Essas subdivisões são muito comuns no caso dos insetos. A razão disso, está muitas vezes ligada à peculiaridades como número de articulações nas antenas - é o caso de uma espécie de besouro. Estudiosos descobriram que uma espécie de besouro tem alguns indivíduos com número maior de articulações nas antenas. E estes apenas se reproduziam com os seus iguais. Então, esses besouros foram classificados em uma subespécie.

O mesmo acontece com os cães. Geneticamente, são idênticos aos lobos (Cannis lupus). Mas apresentam diversas diferenças quanto a tamanho e forma. Assim, são classificados como uma subespécie dos lobos: são os Cannis (gênero) lupus (espécie) familiaris (subespécie).
Ao usar o ser humano como exemplo, veja uma classificação taxonômica completa:

# Reino: Animalia (o homem é um animal, e nesse grupo estão todos os animais).
# Filo: Chordata (possui notocorda - formação da coluna vertebral - no seu desenvolvimento embrionário, e aqui estão todos os vertebrados).
# Classe: Mammalia (seu filhos mamam, e nessa classe estão todos os mamíferos)
# Infraclasse: Placentalia (é um mamífero cuja fêmea possui placenta - mamíferos que não possuem placenta pertencem a outra infraclasse)
# Ordem: Primata
# Família: Hominidae (dentro desse grupo estão as subfamílias Gorilla (gorilas), Pan (chimpanzés), Ardipithecus (extinto), Australopithecus (extinto) , Pierolapithecus (extinto), Sahelanthropus (extinto), Paranthropus (extinto), Kenyanthropus (extinto), Orrorin (extinto), Homininae (seres humanos).
# Subfamília: Homininae
# Gênero: Homo.

Na verdade, o gênero Homo contém diversas espécies, porém, com exceção do sapiens, todas estão extintas. São elas : Homo antecessor, Homo rhodesiensis, Homo rudolfensis, Homo habilis, Homo cepranensis, Homo ergaster, Homo erectus, Homo floresiensis, Homo georgicus, Homo heidelbergensis, Homo neanderthalensis, Homo sapiens.

# Espécie: Homo sapiens.

Conforme os grupos se subdividem de acordo com as características compartilhadas, o número de animais enquadrados diminui. Ao mesmo tempo, estes apresentam cada vez mais características em comum.

Cada grupo de classificação é chamado de táxon - de onde vem o nome taxonomia. Esse sistema de classificação permite que os seres vivos sejam agrupados conforme o seu grau de parentesco e permite compreender melhor a evolução da vida na Terra.
Mariana Aprile é estudante de biologia na Universidade Mackenzie e bolsista do CNPq.

Ângulos no circulo ou circunfêrencia


Professor de Matemática Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves www.accbarrosogestar.wordpress.com
email accbarroso@hotmail.com
extraído do www.mundoeducacao.com.br
A relação entre ângulos e círculo é muito importante no estudo da geometria. Diversos assuntos ligados à astronomia possuem relações estreitas com ângulos no círculo ou na circunferência. Podemos ter ângulos com vértice no centro, no interior ou no exterior de um círculo, cada um apresentando características e propriedades diferentes. Vejamos cada um desses casos:

1. Ângulo com vértice no centro da circunferência – Ângulo central.
Propriedade: o ângulo central apresenta a mesma medida do arco formado por seus lados, ou seja:
2. Ângulo cujo vértice é um ponto da circunferência – Ângulo Inscrito.
Propriedade: a medida do ângulo inscrito equivale à metade da medida do arco formado por seus lados, ou seja:

Exemplo: Determine o valor de α sabendo que o arco AB mede 60o.
Solução:


3. Ângulo com vértice exterior à circunferência – Ângulo excêntrico externo.
Propriedade: o ângulo α equivale à metade da diferença entre as medidas dos arcos formados pelos seus lados, ou seja:

Exemplo: Determine o valor de α na figura abaixo.

4. Ângulo com vértice no interior da circunferência – Ângulo excêntrico interno.
Propriedade: o ângulo excêntrico interno possui medida igual à metade da soma dos arcos formados pelos seus lados, ou seja:
Exemplo: Determine o valor de α na figura abaixo.
Solução:

Equação fundamental da reta

Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com

Toda reta não-vertical (reta que possui inclinação diferente de 90º) possui uma equação que representa todos os seus pontos. Essa equação é demonstrada através de um ponto pertencente a essa reta mais o seu coeficiente angular (m).

Considere uma reta s não vertical que passa pelo ponto B (x0, y0) de coeficiente igual a m.



O outro ponto A(x,y), pertencente ao plano cartesiano, irá pertencer a reta s se o cálculo do coeficiente angular (m) da reta s for igual:

m = ∆y = y – y0
∆x x – x0

Podemos representar essa igualdade da seguinte forma:

m = y – y0
x – x0

y – y0 = m (x – x0)

Essa equação formada é chamada de equação fundamental da reta.

Dessa forma podemos concluir que a equação fundamental da reta é obtida por um ponto pertencente a essa reta mais o seu coeficiente angular, ficando sempre em função de outro ponto.

Exemplo 1:

Determine a equação fundamental da reta que passa pelo P(1/4,-3,2) de coeficiente angular m = -1/2.

Os dados oferecidos no enunciado são:
P(x0, y0) = (1/4,-3,2)
m = -1/2

Substituindo-os na equação fundamental da reta temos:

y – y0 = m (x – x0)

y – (-3/2) = -1/2 (x – 1/4)
y + 3/2 = -1/2 (x – 1/4)
2(y + 3/2) = -x + 1/4
2y + 3 = -x + 1/4

8y + 12 = -4x + 1 4 4

4x + 8y + 11 = 0

Exemplo 2:

Represente por meio de uma equação a reta que passa por esses dois pontos A(1,8) e B(4,2).

Foi dito na explicação acima que a equação fundamental de uma reta é determinada por um ponto pertencente à reta e o seu coeficiente angular. O ponto foi dado no enunciado, falta calcular o seu coeficiente angular.

m = yB - yA xB – xA

m = 2 – 8 = - 6 = - 2
4 – 1 3

Escolha um dos dois pontos e monte a equação fundamental da reta que passa pelos pontos A e B.

Ponto A (1,8) e m = -2

y – y0 = m (x – x0)
y – 8 = - 2 (x – 1)
y – 8 = - 2x + 2
2x + y – 10 = 0.