terça-feira, 3 de dezembro de 2019

Conjuntos Numéricos

Conjunto dos Números Naturais (IN)

Conjuntos numéricos naturais
Um subconjunto importante de IN é o conjunto IN*:
IN*={1, 2, 3, 4, 5,...} ► o zero foi excluído do conjunto IN.
Podemos considerar o conjunto dos números naturais ordenados sobre uma reta, como mostra o gráfico abaixo:


· Conjunto dos números inteiros (Z)

Conjunto dos números inteiros
O conjunto IN é subconjunto de Z.
Temos também outros subconjuntos de Z:
Z* = Z-{0}
Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...}
Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,...}
Observe que Z+ = IN.
Podemos considerar os números inteiros ordenados sobre uma reta, conforme mostra o gráfico abaixo:


· Conjunto dos números racionais (Q)

Os números racionais são todos aqueles que podem ser colocados na forma de fração (com o numerador e denominador Z). Ou seja, o conjunto dos números racionais é a união do conjunto dos números inteiros com as frações positivas e negativas.
Então: por exemplo, são números racionais.
Exemplos:

Assim, podemos escrever:
É interessante considerar a representação decimal de um número racional , que se obtém dividindo a por b.
Exemplos referentes às decimais exatas ou finitas.
Exemplos referentes às decimais periódicas ou infinitas:
Toda decimal exata ou periódica pode ser representada na forma de número racional.


· Conjunto dos números irracionais

Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem ser escrito na forma de fração (divisão de dois inteiros). Como exemplo de números irracionais, temos a raiz quadrada de 2 e a raiz quadrada de 3:
Números racionais

Um número irracional bastante conhecido é o número pi =3,1415926535...


· Conjunto dos números reais (IR)

Dados os conjuntos dos números racionais (Q) e dos irracionais, definimos o conjunto dos números reais como:
Conjuntos numéricos irracionais
O diagrama abaixo mostra a relação entre os conjuntos numéricos:
Portanto, os números naturais, inteiros, racionais e irracionais são todos números reais. Como subconjuntos importantes de IR temos:
IR* = IR-{0}
IR+ = conjunto dos números reais não negativo
IR_ = conjunto dos números reais não positivos
Obs: entre dois números inteiros existem infinitos números reais. Por exemplo:
- Entre os números 1 e 2 existem infinitos números reais:
1,01 ; 1,001 ; 1,0001 ; 1,1 ; 1,2 ; 1,5 ; 1,99 ; 1,999 ; 1,9999 ...
- Entre os números 5 e 6 existem infinitos números reais:
5,01 ; 5,02 ; 5,05 ; 5,1 ; 5,2 ; 5,5 ; 5,99 ; 5,999 ; 5,9999 ...
Autoria: Juliano Zambom Niderauer

Plano Cartesiano

O Sistema de Coordenadas Cartesianas, mais conhecido como Plano Cartesiano, foi criado por René Descartes com o objetivo de localizar pontos. Ele é formado por dois eixos perpendiculares: um horizontal e outro vertical que se cruzam na origem das coordenadas. O eixo horizontal é chamado de abscissa (x) e o vertical de ordenada (y). Os eixos são enumerados compreendendo o conjunto dos números reais. Observe a seguir uma figura representativa do plano cartesiano:

As coordenadas cartesianas são representadas pelos pares ordenados (x ; y). Em razão dessa ordem, devemos localizar o ponto observando primeiramente o eixo x e posteriormente o eixo y. Qualquer ponto que não se encontrar sobre os eixos, estará localizado nos quadrantes, veja:
1º quadrante = x > 0 e y > 0
2º quadrante = x < 0 e y > 0
3º quadrante = x < 0 e y < 0
4º quadrante = x > 0 e y < 0

Localizando pontos no Plano Cartesiano:


A(4 ; 3) → x = 4 e y = 3

B(1 ; 2) → x = 1 e y = 2

C( –2 ; 4) → x = –2 e y = 4

D(–3 ; –4) → x = –3 e y = –4

E(3 ; –3) → x = 3 e y = –3
O Plano Cartesiano é muito utilizado na construção de gráficos de funções, onde os valores relacionados à x constituem o domínio e os valores de y, a imagem da função. A criação do Sistema de Coordenadas Cartesianas é considerada uma ferramenta muito importante na Matemática, facilitando a observação do comportamento de funções em alguns pontos considerados críticos.

Podemos associar o Plano Cartesiano com a latitude e a longitude, temas relacionados aos estudos geográficos e à criação do atual sistema de posicionamento, o GPS. O Sistema de Posicionamento Global permite que saibamos nossa localização exata na terra, desde que tenhamos em mão um receptor de sinais GPS, informando a latitude, a longitude e a altitude com o auxilio de satélites em órbita da Terra. Um exemplo de utilização do GPS são os aviões, que para não se colidirem são monitorados e informados em qual rota devem seguir viagem.
mundoeducacao

NÚMEROS FRACIONARIOS E DECIMAIS

Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
extraído do http://jmp25.blogspot.com

NÚMEROS FRACIONARIOS E DECIMAIS

NÚMEROS FRACIONÁRIOS E DECIMAIS


Durante muito tempo, os números naturais eram os únicos números que o homem utilizava. Mas, com o passar do tempo, o homem foi encontrando situações mais difíceis para resolver. No antigo Egito, por exemplo, as terras próximas ao rio Nilo eram muito disputadas por isso os faraós tinham funcionários que mediam e demarcavam os terrenos.
Eles usavam cordas com nós separados sempre pela mesma distância. Em muitos casos, principalmente para efetuar medições, precisou criar outros números que não fossem apenas os números naturais. Surgiram assim, os números fracionários ou racionais.

Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números racionais e b ≠ 0, indicamos a divisão de a por b com o símbolo a : b ou, ainda a/b

Chamamos o símbolo a/b de fração.

Assim, a fração 10/2 é igual a 10 : 2

Na fração a/b, a é o numerador e b é o denominador

Efetuando, por exemplo, a divisão de 10 por 2, obtemos o quociente 5.

Assim, 10/2 é um número natural, pois 10 é múltiplo de 2.

Mas efetuando a divisão de 3 por 4 não obtemos um número natural. Logo ¾ não é um número natural. A fração envolve a idéia de alguma coisa que foi dividida em partes iguais.

Agenor comeu ¾ de uma barra de chocolate. Que quantidade de chocolate Agenor comeu? Que parte da barra de chocolate sobrou?

Dividindo o chocolate em 4 partes, iguais temos;

Agenor comeu ¾ , portanto sobrou ¼



LEITURA DE UMA FRAÇÃO

Algumas frações recebem nomes especiais: as que têm denominadores 2,3,4,5,6,7,8,9

½ um meio

¼ um quarto

1/6 um sexto

1/8 um oitavo

2/5 dois quintos

9/8 nove oitavos

1/3 um terço

1/5 um quinto

1/7 um sétimo

1/9 um nono

4/9 quatro nonos

16/9 dezesseis nonos


as que tem denominadores 10, 100, 1000, etc.............

1/10 um décimo

1/100 um centésimo

1/1000 um milésimo

7/100 sete centésimos


as decimais que são lidas acompanhadas da palavra avos :

1/11 um onze avos

7/120 sete cento e vinte avos

4/13 quatro treze avos

1/300 um trezentos avos

5/19 cinco dezenove avos

6/220 seis duzentos e vinte avos



EXERCÍCIOS

1) indique as divisões em forma de fração:

a) 14 : 7 = (R: 14/7)
b) 18 : 8 = (R: 18/8)
c) 5 : 1 = (R: 5/1)d) 15 : 5 = ( R: 15/5)
e) 18 : 9 = (R: 18/9)
f) 64 : 8 = (R: 64/8)
2) Calcule o quociente das divisões

a) 12/3 = (R:4)
b) 42/21 = (R: 2)
c) 8/4 = (R: 2)d) 100/10 = (R: 10)
e) 56/7 = (R: 8)
f) 64/8 = (R: 8 )
3) Em uma fração, o numerador é 5 e o denominador é 6

a) Em quantas partes o todo foi dividido? (R: 6)b) Quantas partes do todo foram consideradas? (R: 5)

4) Escreva como se lêem as seguintes frações:

a) 5/8 (R: cinco oitavos)b) 9/10 (R: nove décimos)
c) 1/5 (R: um quinto)
d) 4/200 ( R: quatro duzentos avos)
e) 7/1000 (R: sete milésimos)
f) 6/32 (R: seis trinta e dois avos)


TIPOS DE FRAÇÕES

a) Fração própria : é aquela cujo o numerador é menor que o denominador.
Exemplos : 2/3, 4/7, 1/8

b) Fração imprópria: é a fração cujo numerador é maior ou igual ao denominador
Exemplo: 3/2, 5/5

c) Fração aparente: é a fração imprópria cujo o numerador é múltiplo do denominador
Exemplo: 6/2, 19/19, 24/12, 7/7


EXERCÍCIO
1) Classifique as frações em própria, imprópria ou aparente:

a) 8/9 (R: própria)
b) 10/10 (R: imprópria e aparente)
c) 26/13(R: imprópria e aparente)
d) 10/20 (R: própria)
e) 37/19 (R: imprópria)
f) 100/400 (R: própria)



FRAÇÕES EQUIVALENTES

Para encontrar frações equivalentes, multiplicamos o numerador e o denominador da fração ½ por um mesmo numero natural diferente de zero.

Assim: ½, 2/4, 4/8, 3/6, 5/10 são algumas frações equivalentes a 1/2




SIMPLIFICANDO FRAÇÕES

Cláudio dividiu a pizza em 8 partes iguais e comeu 4 partes. Que fração da pizza ele comeu?

Cláudio comeu 4/8 da pizza. Mas 4/8 é equivalente a 2/4. Assim podemos dizer que Cláudio comeu 2/4 da pizza.
A fração 2/4 foi obtida dividindo-se ambos os termos da fração 4/8 por 2 veja:

4/8 : 2/2 = 2/4

Dizemos que a fração 2/4 é uma fração simplificada de 4/8.
A fração 2/4 ainda pode ser simplificada, ou seja, podemos obter uma fração equivalente dividindo os dois termos da fração por 2 e vamos obter ½



OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (FRAÇÕES)


ADIÇÃO E SUBTRAÇÃO

1°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores iguais

Conclusão: Somamos os numeradores e conservamos o denominador comum.

Exemplo:
a) 5/7 – 2/7 = 3/7
b) 4/9+ + 2/9 = 6/9 = 2/3
c) 3/5 – 1/5 = 2/5



Exercícios
1) Efetue as adições

a) 3/6 + 2/6 = (R: 5/6)b) 13/7 + 1/7 = (R: 14/7)
c) 2/7+ 1/7 + 5/7 = (R: 8/7)d) 4/10 + 1/10 + 3/10 = (R: 8/10)
e) 5/6 + 1/6 = (R: 1)
f) 8/6 + 6/6 = (R: 14/6) = (R: 7/3)
g) 3/5 + 1/5 = (R: 4/5)


2) Efetue as subtrações:

a) 7/9 – 5/9 = (R: 2/9)
b) 9/5 -2/5 = (R: 7/5)
c) 2/3 – 1/3 = (R: 1/3)
d) 8/3 – 2/3 = (R: 6/3)
e) 5/6 – 1/6 = (R: 2/3)
f) 5/5 – 2/5 = (R: 3/5)
g) 5/7 – 2/7 = (R: 3/7)

3) Efetue as operações:

a) 5/4 + ¾ - ¼ = (R: 7/4)
b) 2/5 + 1/5 – 3/5 = (R: 0/5)
c) 8/7 – 3/7 + 1/7 = (R: 6/7)d) 7/3 – 4/3 – 1/3 = (R: 2/3)
e) 1/8 + 9/8 -3/8= (R: 7/8)
f) 7/3 – 2/3 + 1/3 = (R:6/3 ) = (R: 2)
g) 7/5 + 2/5 – 1/5 = (R: 8/5)
h) 5/7 – 2/7 – 1/7 = (R: 2/7)


2°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores diferentes

conclusão: Quando os denominadores são diferentes fazemos o m.m.c. dos denominadores .

exemplo:

a) 2/3 +1/2 = 4/6 + 3/6 = 7/6

3, 2 I 2
3, 1 I 3
1, 1 I ---2 . 3 = 6



b) 2/3 – ¼ = 8/12 – 3/12 = 5/12

3, 4 I 2
3, 2 I 2
3, 1 I 3
1, 1 I ----2 . 2. 3 = 12

exercícios
1) Efetue as adições:

a) 1/3 + 1/5 = (R: 8/15)
b) ¾ + ½ = (R: 5/4)
c) 2/4 + 2/3 = (R: 14/12)
d) 2/5 + 3/10 = (R: 7/10)
e) 5/3 + 1/6 = (R: 11/6)
f) ¼ + 2/3 + ½ = (R: 17/12)
g) ½ + 1/7 + 5/7 = (R: 19/14)
h) 3/7 + 5/2 + 1/14 = (R: 42/14)
i) 4/5 + 1/3 + 7/6 = (R: 69/30)
j) 1/3 + 5/6 + ¾ = (R: 23/12)
k) ½ + 1/3 + 1/6 = (R: 1)l) 10 + 1/8 + ¾ = (R: 85/8)
m) 1/3 + 3/5 = (R:14/15)
n) ¾ + 6/7 = (R: 45/28)
o) 5/7 + ½ = (R: 17/14)
p) ½ + 1/3 = (R: 5/6)
q) 3/14 + 3/7 = (R: 9/14)
r) 3/5 + ¾ + ½ = (R: 37/20)
s) 1/12 + 5/6 + ¾ = (R: 20/12)
t) 8 + 1/5 + 4/5 = (R: 45/5)
u)

2) efetue as subtrações

a) 5/4 – ½ = (R: 3/4)
b) 3/5 – 2/7 = (R: 11/35)
c) 8/10 – 1/5 = (R: 6/10)
d) 5/6 – 2/3 = (R: 1/6)
e) 4/3 – ½ = (R: 5/6)
f) 13/4 – 5/6 = (R: 29/12)
g) 7/8 – 1/6 = (R: 17/24)
h) 4/5 – 1/3 = (R: 7/15)
i) 3/5 – ¼ = (R: 7/20)
j) 10/11 – ½ = (R: 9/22)
l) 6/4 – 2/3 = (R: 10/12)
m) 5/8 – ½ = (R: 1/8)
n) 4/5 – ¼ = (R: 11/20)
o) ¾ - 5/8 = (R: 1/8)
p) 9/11 – ½ = (R: 7/22)
q) 7 – 2/3 = (R: 19/3)r) 4/2 - 2/3 = (R: 8/6)
s) 3/2 - 2/3 = (R: 5/6)
t) 1/2 - 1/3 = (R: 1/6)
u) 3/2 - 1/4 = (R: 5/4)


3) Efetue

a) 2 + 5/3 = (R: 11/3)
b) 7 + ½ = (R: 15/2)
c) 3/5 + 4 = (R: 23/5)
d) 6/7 + 1 = (R: 13/7)
e) 8 + 7/9 = (R: 79/9)
f) 5 – ¾ = (R: 17/4)
g) 2 – ½ = (R: 3/2)
h) 7/2 – 3 = (R: 1/2)
i) 11/2 – 3 = (R: 5/2)
j) 7/4 – 1 = (R: 3/4)
k) 1 – ¼ = (R: ¾ )
l) ½ - 1/3 = (R: 1/6)
m) ½ + ¼ = (R: ¾)
n) 1 + 1/5 = (R: 6/5)
o) 1 – 1/5 = (R: 4/5)

4) Calcule o valor das expressões:

a) 3/5 + ½ - 2/4 = (R: 12/20)
b) 2/3 + 5/6 – ¼ = (R: 15/12)c) 4/5 – ½ + ¾ = (R: 21/20)
d) 5/7 – 1/3 + ½ = (R: 37/42)
e) 1/3 + ½ - ¼ = (R: 7/12)
f) ¾ - ½ + 1/3 = (R: 7/12)
g) 5/6 – ½ + 2/3 = (R: 1)
h) 4/5 – ¾ + ½ = (R: 11/20)
i) ½ + 2/3 + 2/5 + 1/3 = (R: 57/30)
j) 6/5 – ¾ + ½ - 2/3 = (R: 17/60)l) 1/6 + 5/4 + 2/3 = (R: 25/12)



MULTIPLICAÇÃO


Vamos Calcular : 2/3 x 4/5 = 8/15

Conclusão : multiplicamos os numeradores entre si e os denominadores entre si

Exemplo:

a) 4/7 x 3/5 = 12/35

b) 5/6 x 3/7 = 15//42 = 5/14 simplificando

EXERCICIOS

1) Efetue as multiplicações

a) ½ x 8/8 = (R: 8/16)
b) 4/7 x 2/5 = (R: 8/35)
c) 5/3 x 2/7 = (R: 10/21)
d) 3/7 x 1/5 = (R: 3/35)
e) 1/8 x 1/9 = (R: 1/72)
f) 7/5 x 2/3 = (R: 14/15)
g) 3/5 x ½ = (R: 3/10)h) 7/8 x 3/2 = (R: 21/16)
i) 1/3 x 5/6 = (R: 5/18)
j) 2/5 x 8/7 = (R: 16/35)k) 7/6 x 7/6 = (R: 49/36)
l) 3/7 x 5/2 = (R: 15/14)
m) 3/10 x 5/9 = (R: 15/90)
n) 2/3 x ¼ x 5/2 = (R: 10/24)
o) 7 x ½ x 1/3 = (R: 7/6)
p)

2) Efetue as multiplicações

a) 4/3 x ½ x 2/5 = (R: 8/30)
b) 1/5 x ¾ x 5/3 = (R: 15/60)
c) ½ x 3/7 x 1/5 = (R: 3/70)d) 3/2 x 5/8 x ¼ = (R: 15/64)
e) 5/4 x 1/3 x 4/7 = (R: 20/84)

3) Efetue as multiplicações
a) 2 x 5/3 = (R: 10/3)
b) 3 x 2/5 = (R: 6/5)
c) 1/8 x 5 = (R: 5/8)d) 6/7 x 3 = (R: 18/7)e) 2 x 2/3 x 1/7 = (R: 4/21)
f) 2/5 x 3 x 4/8 = (R: 24/40)
g) 5 x 2/3 x 7 = (R: 70/3)
h) 7/5 x 2 x 4 = (R: 56/5)
i) 8 x 2/3 = (R: 16/3)
j) 5/9 x 0/6 = (R: 0/54)
k) 1/7 x 40 = (R: 40/7)l) ½ x 1/3 x ¼ x 1/5 = (R: 1/120)m) 1 x 2/3 x 4/3 x 1/10 = (R: 8/90)


DIVISÃO

Vamos calcular ½ : 1/6

Para dividir uma fração por outra, basta multiplicar a primeira fração pela inversa da segunda

Assim: ½ : 1/6 = ½ x 6/1 = 6/2 = 3

Exemplos:

a) 2/3 : 5/2 = 2/3 x 2/5 = 4/15
b) 7/9 : 1/5 = 7/9 x 5/1 = 35//9
c) 3/7 : 4 = 3/7 x ¼ = 3/28

Exercícios

1) Efetue as divisões
a) ¾ : 2/5 = (R: 15/8)
b) 5/7 : 2/3 = (R: 15/14)
c) 4/5 : 3/7 = (R: 28/15)
d) 2/9 : 7/8 = (R: 16/63)
e) 1/6 : 5/3 = (R: 3/30) ou (3/10)
f) 7/8 : ¾ = (R: 28/24) ou (7/6)g) 8/7 : 9/3 = (R: 24/63)
h) 4/5 : 2/5 = (R: 20/10) ou (2/1) ou ( 2)i) 5/8 : ¾ = (R: 20/24) ou (5/6)
j) 2/9 : 4/7 = (R: 14/36) ou (7/18)

2) Efetue as divisões :

a) 5 : 2/3 = (R: 15/2)
b) 4 : 1/7 = (R: 28/1) ou (28)
c) 8/9 : 5 = (R: 8/45)
d) 3/7 : 3 = (R: 3/21)
e) 7/3 : 4/7 = (R: 49/12)
f) 2/3 : ½ = (R: 4/3)
g) 4/5 : 2/3 = (R: 12/10)
h) 2/7 : 5/3 = (R: 6/35)
i) 3/7 : 2 = (R: 3/14)
j) 3/2 : 5/7 = (R: 21/10)
k) 3/8 : 4/7 = (R: 21/32)


POTENCIAÇÃO

Vamos calcular a potência (2/5)³= 2/5 x 2/5 x 2/5 = 8/125

Conclusão: para elevar uma fração a um expoente, elevam-se o numerador e o denominador da fração desse expoente.

Exemplo

a) (5/7)² = 5²/ 7² = 25/49

1) Toda fração de expoente 1 dá como resultado a própria fração

Exemplo: (3/8)¹ = 3/8

2) Toda a fração elevada ao expoente zero dá como resultado o número 1

Exemplo : (3/4)⁰ = 1


Exercícios

1) Calcule as potências
a) (2/3)² = (R: 4/9)
b) (4/7)² = (R: 16/49)
c) (7/5)² = (R: 49/25)
d) (1/3)² = (R: 1/9)
e) (5/3)² = (R: 25/9)
f) (7/30)⁰ = ( R: 1)
g) (9/5)¹ = (R: 9/5)
h) (2/3)³ = (R: 8/27)
i) (1/5)³ = (R: 1/125)
j) (1/2)² = (R: 1/4)
k) (2/3)⁴= (R: 16/81)
l) (2/5)¹ = (R: 2/5)
m) (3/11)² = (R: 9/121)
n) (9/4)⁰ = (R: 1)o) (12/13)² = (R: 144/169)
p) (1/2)⁵ = (R: 1/32)q) (3/7)³ = ( R: 27/343)

RAIZ QUADRADA DE NÚMEROS RACIONAIS (FRAÇÃO)
Sabemos que :

√25 = 5
√49 = 7
√25/49 = 5/7

Conclusão:

Para extrair a raiz quadrada de um número fracionário, extraem-se a raiz quadrada do numerador e a raiz quadrada do denominador.

Exemplos

a) √4/9 = 2/3
b) √1/36 = 1/6

Exercícios

1) Calcule a raiz quadrada
a) √9/16 = (R: 3/4)
b) √1/25 = (R:1/5)
c) √9/25 = (R: 3/5)
d) √16/49 = (R: 4/7)
e) √64/25 = (R: 8/5)
f) √1/9 = (R: 1/3)
g) √25/81 = (R: 5/9)
h) √49/36 = (R: 7/6)
i) √1/100 = (R: 1/10)








EXPRESSÕES COM NÚMEROS RACIONAIS
As expressões com números racionais devem ser resolvidas obedecendo à seguinte ordem de operações:

1°) Potenciação e Radiciação
2°) Multiplicação e Divisão
3°) Adição e subtração

Essas operações são realizadas eliminando :

1°) Parênteses
2°) Colchetes
3°) Chaves

exemplos:

1) 1/5 + 4/5 x 1/3 =

1/5 + 4/15 =

3/15 + 4/15 =

7/15


2) (3/5)² + 2/5 x ½ =

9/25 + 2/10 =

18/50 + 10/50 =

= 28/50 = 14/25

3) ( 4 + ½ ) – 1/5 : 2/3 =

( 8/2 + ½ ) – 1/5 : 2/3 =

9/2 – 1/5 : 2/3 =

9/2 – 1/5 x 3/2 =

9/2 – 3/10 =

45/10 – 3/10 =

= 42/10 = 21/5



Exercícios


1) Calcule o valor das expressões:


a) 5/8 + ½ -2/3 = (R: 11/24)
b) 5 + 1/3 -1/10 = (R: 157/30)
c) 7/8 – ½ - ¼ = (R: 1/8)
d) 2/3 + 3 + 1/10 = (R: 113/30)
e) ½ + 1/6 x 2/3 = (R: 11/18)
f) 3/10 + 4/5 : ½ = (R: 19/10)
g) 2/3 x ¾ - 1/6 = (R: 4/12 ou 1/3)
h) 7 – ¼ + 1/7 = (R: 193/28)
i) 3 x ½ - 4/5 = (R: 7/10)
j) 7/4 – ¼ x 3/2 = ( R: 11/8)k) ½ + 3/2 x ½ = ( R: 5/4)
l) 1/10 + 2/3 x ½ = (R: 13/30)
2) Calcule o valor da expressão:

a) 7 x ½ + (4/5)² = (R: 207/50)
b) (1/3)² + 2/5 x ½ = (R: 28/90 ) ou (14/45)
c) (1/2)² : ¾ + 5/3 = ( R: 24/12) ou (2)d) (1/3)² x 5/2 + ½ = ( R: 14/18) ou (7/9)
e) 2/5 x ½ + ( 3/5)² = ( R: 28/50) ou (14/25)f) (2/3)²+ 4 + 1/3 -1/2 = ( R: 77/18)
3) Calcule o valor da expressão:

a) 5/6 – ( 1/3 + 1/5 ) = ( R: 9/30) ou (3/10)
b) 2/5 x ( ¾ + 5/8) = ( R: 22/40) ou (11/20)c) ½ : ( 2/3 + ¾ ) = ( R: 12/34) ou ( 6/17)
d) ( 1/3 + ½ ) : 5/6 = (R: 30/30) ou (1)
e) ½ . ( 2/3 + ¾ ) = ( R: 17/24)f) ( 5/7 x 2/3 ) : 1/6 = (R: 60/21)
g) (3/2 - 2/5 ) + ( 5/4 - 2/3) = (R: 101/60)
h) 1 + (1/2 - 1/5) - (7/4 - 5/4) = (R: 16/20)i) ( 7/8 - 5/6) + ( 8/9 - 7/9) = (R: 11/72)


4) Calcule o valor das expressões

a) ( ¾ x ½ + 2/5 ) + ¼ = (R: 41/40)b) ( 2/3 x ¼ ) + ( 1/3 x ½ ) = (R: 4/12)
c) ( 5- ½ ) : ( 2 – 1/3) = ( R: 27/10)d) ( 3 x 5/2 ) : ( 1/5 + 1/3 ) = (R: 225/16)
e) ( 3 x ¾ ) + ( 3 x ¼ ) = ( R: 12/4)
f) ( 3 + ½ ) x 4/5 – 3/10 = (R: 25/10)
5) Calcule o valor das expressões

a) ½ : 1/3 + ¾ x 5/9 = ( R: 69/36)
b) 3/8 x ( ½ x 4/3 + 4/3 ) = (R: 36/48)
c) ( 1/3 + ¼ ) : 5/2 + 2/3 = (R: 54/60)
d) ( ¾ + ¼ - ½ ) : 3/2 = (R: 8/11)
d) ( 1 + 1/3 )² x 9/4 + 6 = (R: 360/36)
e) 1 + (3/2)² + ( 1 + ¼ ) = (R: 18/4)


6) calcule o valor das expressões


PROBLEMAS COM NÚMEROS RACIONAIS

Os problemas com números racionais absolutos são geralmente resolvidos da seguinte forma :

1°) Encontrando o valor de uma unidade fracionária

2°) obtendo o valor correspondente da fração solicitada

exemplo

Eu tenho 60 fichas, meu irmão tem ¾ dessa quantidade. Quantas fichas tem o meu irmão ?

60 x ¾ = 180/4 = 45

R: O meu irmão tem 45 fichas

EXERCICIOS

1) Determine 2/3 de R$ 1200,00 (R: 800)
2) Numa caixa existem 80 bombons. Calcule 2/5 desses bombons. (R: 32)
3) O comprimento de uma peça de tecido é de 42 metros. Quanto medem 3/7 dessa peça ? (R: 18 m)

4) Um automóvel percorreu 3/5 de uma estrada de 600 km. Quantos quilômetros percorreu? (R: 360 km)

5) Numa viagem de 72 km, já foram percorridos ¾ . Quantos quilômetros já foram percorridos? (R : 54 km)
6) Um livro tem 240 páginas., Você estudou 5/6 do livro. Quantas paginas você estudou? (R: 200)

7) Os 2/5 de um número correspondem a 80. Qual é esse número? (R: 200)

8) Os ¾ do que possuo equivalem a R$ 900,00. Quanto possuo? (R: 1200)

9) Um time de futebol marcou 35 gols, correspondendo a 7/15 do total de gols do campeonato. Quantos gols foram marcados no campeonato? (R: 75)

10) Para encher 1/5 de um reservatório são necessários 120 litros de água. Quanto é a capacidade desse reservatório? (R: 600 litros)

11) Se 2/9 de uma estrada corresponde a 60 km, quantos quilômetros tem essa estrada?
(R: 270 km)

12) Para revestir ¾ de uma parede foram empregados 150 azulejos. Quantos azulejos são necessários para revestir toda a parede? (R: 200)

13) De um total de 240 pessoas,1/8 não gosta de futebol. Quantas pessoas gostam de futebol?
(R: 210)

14) Eu fiz uma viagem de 700 km. Os 3/7 do percurso foram feitos de automóvel e o restante de ônibus. Que distancia eu percorri de ônibus? (R: 400 km)

15) Numa prova de 40 questões um aluno errou ¼ da prova. Quantas questões ele acertou?
(R: 30 )

16) Numa classe de 45 alunos, 3/5 são meninas. Quantos meninos há nessa classe? (R: 18)

17) Um brinquedo custou R$ 152,10,. Paguei 1/6 do valor desse objeto. Quanto estou devendo?
(R: 126,75)


NÚMEROS DECIMAIS


FRAÇÃO DECIMAL


Chama-se fração decimal toda fração cujo denominador é 10 ou potência de 10 ex 10, 100, 100...

como:

a) 7/10
b) 3/100
c) 27/1000

NÚMEROS DECIMAIS

a) 7/10 = 0,7
b) 3/100 = 0,03
c) 27/1000 = 0,027

nos números decimais , a virgula separa a parte inteira da parte decimal

LEITURA DO NÚMERO DECIMAL

Para ler um, número decimal, procedemos do seguinte modo:

1°) Lêem -se os inteiros

2°) Lê-se a parte decimal, seguida da palavra:

décimos - se houver uma casa decimal
centésimos - se houver duas casas decimais
milésimos - se houver três casas decimais

exemplos:

a) 5,3 - lê-se cinco inteiros e três décimos
b) 1,34 - lê-se um inteiro e trinta e quatro centésimos
c) 12,007 - lê-se doze inteiros e sete milésimos

quando a parte inteira for zero, lê-se apenas a parte decimal

a) 0,4 - lê-se quatro décimos
b) 0,38 - lê-se trinta e oito centésimos

TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL

Para transformar uma fração decimal em número decimal, escrevemos o numerador e separamos, à direita da virgula, tantas casas quanto são os zeros do denominador

exemplos:

a) 42/10 = 4,2
b) 135/100 = 1,35
c) 135/1000 = 0,135

Quando a quantidade de algarismos do númerador não for suficiente para colocar a vírgula, acrescentamos zeros à esquerda do número.

exemplo:

a) 29/1000 = 0,029
b) 7/1000 = 0,007


EXERCÍCIOS ,

1) transforme as frações em números decimais

a) 3/10 = (R: 0,3)
b) 45/10 = (R: 4,5)
c) 517/10 = (R:51,7)
d) 2138/10 = (R: 213,8)
e) 57/100 = (R: 0,57)f) 348/100 = (R: 0,348)
g) 1634/100 = (R: 1,634)
h) 328/ 1000 = (R: 0,328)
i) 5114 / 1000 = (R: 5,114)
j) 2856/1000 = (R: 2,856)l) 4761 / 10000 = (R: 0,4761)
m) 15238 /10000 = (R: 1,5238)

2) transforme as frações em números decimais

a) 9 / 100 = (R: 0,09)
b) 3 / 1000 = (R: 0,003)c) 65 /1000 = (R: 0,065)d) 47 /1000 = (R: 0,047)e) 9 / 10000 = (R: 0,0009)f) 14 / 10000 = (R: 0,0014)
TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO

Procedimentos:

1) O numerador é um número decimal sem a virgula
2) O denominador é o número 1 acompanhado de tantos zeros quantos forem os algarismos do número decimal depois da vírgula.

exemplos:

a) 0,7 = 7/10
b) 8,34 / 834 /100
0,005 = 5/ 1000

EXERCÍCIOS

1) Transforme os números decimais em frações

a) 0,4 = (R: 4/10)b) 7,3 = (R: 73/10)
c) 4,29 = (R: 429/100)
d) 0,674 = (R: 674/1000)
e) 8,436 = (R: 8436/1000)f) 69,37 = (R: 6937/100)
g) 15,3 = (R: 153/10)
h) 0,08 = (R: 8/100)
i) 0,013 = (R: 13/1000)j) 34,09 = (R: 3409/100)l) 7,016 = (R: 7016/1000)m) 138,11 = (R: 13811/100)



OPERAÇÕES COM NÚMEROS DECIMAIS

ADIÇÃO E SUBTRAÇÃO

Colocamos vírgula debaixo de vírgula e operamos como se fossem números naturais>

exemplo

1) Efetuar 2,64 + 5,19

2,64
5,19 +
----
7,83

2) Efetuar 8,42 - 5,61

8,42
5,61 -
----
2,81

Se o número de casas depois da virgula for diferente, igualamos com zeros à direita

3) Efetuar 2,7 + 5 + 0,42

2,70
5,00 +
0,42
----
8,12

4) efetuar 4,2 - 2,53

4,20
2,53 -
------
1,67


EXERCÍCIOS

1) Calcule

a) 1 + 0,75 = (R: 1,75)b) 0,8 + 0,5 = (R: 1,3)c) 0,5 + 0,5 = (R: 1,0)d) 2,5 + 0,5 + 0,7 = (R: 3,7)e) 0,5 + 0,5 + 1,9 + 3,4 = (R:6,3)
f) 5 + 0,6 + 1,2 + 15,7 = (R: 22,5)
2) Efetue as adições

a) 3,5 + 0,12 = (R: 3,62)
b) 9,1 + 0,07 = (R: 9,17)
c) 4,7 + 12,01 = (R: 16,71)
d) 2,746 + 0,92 = (R: 3,666)
e) 6 + 0,013 = (R: 6,013)f) 4 + 0,07 + 9,1 = (R: 13,17)g) 16.,4 + 1,03 + 0,72 = (R: 18,15)h) 5,3 + 8,2 + 0,048 = (R: 13,548)
i) 0,45 + 4,125 + 0,001 = (R: 4,576)
3) Efetue as subtrações

a) 8,2 - 1,7 = (R: 6,5)b) 5 - 0,74 = (R: 4,26)c) 4,92 - 0,48 = (R: 4,44)d) 12,3 - 1,74 = (R: 10,56)e) 3 - 0,889 = (R: 2,111)
f) 4,329 - 2 = (R: 2,329)g) 15,8 - 9,81 = (R: 5,99)h) 10,1 - 2,734 = (R: 7,366)

4) Calcule o valor das expressões

a) 5 - 1,3 + 2,7 = (R: 6,4)
b) 2,1 - 1,8 + 0,13 = (R: 0,43)
c) 17,3 + 0,47 - 8 = (R: 9,77)d) 3,25 - 1,03 - 1,18 = (R: 1,04)
e) 12,3 + 6,1 - 10,44 = (R: 7,96)
f) 7 - 5,63 + 1,625 = (R: 2,995)

5) Calcule o valor das expressões

a) (1 + 0,4) - 0,6 = (R: 0,8)
b) 0,75 + ( 0,5 - 0,2 ) = (R: 1,05)
c) ( 5 - 3,5 ) - 0,42 = (R: 1,08)
d) 45 - ( 14,2 - 8,3 ) = (R: 39,1)e) 12 + ( 15 - 10,456) = (R: 16,544)
f) 1,503 - ( 2,35 - 2,04) = (R: 1,193)
g) ( 3,8 - 1,6) - ( 6,2 - 5,02) = (R: 1,04)
h) ( 7 + 2,75 ) - ( 0,12 + 1,04) = (R: 8,59)





MULTIPLICAÇÃO DE NÚMEROS DECIMAIS

Multiplicamos os números decimais como se fossem números naturais. O números de casas decimais do produto é igual a soma do número de casas decimais dos fatores.

Exemplo

1) efetuar 2,45 x 3,2

2,46
x3,2
-----
7,872

2) efetuar 0,27 x 0,003

x0,27
0,003
-------
0,00081

EXERCÍCIOS

1) Efetue as multiplicações

a) 2 x 1,7= (R: 3,4)
b) 0,5 x 4 = (R: 2)c) 0,5 x 7 = (R: 3,5)d) 0,25 x 3 = (R: 0,75)
f) 6 x 3,21 = (R: 19,26)

2) Efetue as multiplicações

a) 5,7 x 1,4 = (R: 7,98)b) 0,42 x 0,3 = (R: 0,126)
c) 7,14 x 2,3 = (R: 16,422)
d) 14,5 x 0,5 = (R: 7,25)
e) 13,2 x 0,16 = (R 2,112)f) 7,04 x 5 = (R:35,2)
g) 21,8 x 0,32 = (R: 6,976)
h) 3,12 x 2,81 = (R: 8,7672)i) 2,14 x 0,008 = (R: 0,01712)j) 4,092 x 0,003 = (R: 0,012276)


3) Determine os seguintes produtos:

a) 0,5 x 0,5 x 0,5 = (R: 0,125)
b) 3 x 1,5 x 0,12 = (R: 6,75)
c) 5 x 0,24 x 0,1 = (R: 0,288)
d) 0,2 x 0,02 x 0,002 = (R: 0,000008)
e) 0,7 x 0,8 x 2,1 = (R: 1,176)
f) 3,2 x 0,1 x 1,7 = (R: 0,032)

4) calcule o valor das expressões

a) 3 x 2,5 - 1,5 = (R: 6)
b) 2 x 1,5 + 6 = (R: 9)
c) 3,5 x 4 - 0,8 = (R: 13,2)
d) 0,8 x 4 + 1,5 = (R: 4,7)
e) 2,9 x 5 - 8,01 = (R: 6,49)
f) 1,3 x 1,3 - 1,69 = (R: 0)


MULTIPLICAÇÃO POR POTENCIA DE 10

Para multiplicar por 10, 100, 1000, etc, basta deslocar a vírgula para a direita, uma, duas, três, etc casas decimais.

exemplos

a) 3,785 x 10 = 37,85
b) 3,785 x 100 = 378,5
c) 3,785 x 1000 = 3785
d) 0,0928 x 100 = 9,28

EXERCÍCIOS

1) Efetue as multiplicações:

a) 4,723 x 10 = (R: 47,23)
b) 8,296 x 100 = (R: 829,6)
c) 73,435 x 1000 = ( R: 73435)
d) 6,49 x 1000 = (R: 6490)e) 0,478 x 100 = (R: 478)
f) 3,08 x 1000 = (R: 3080)
g) 0,7 x 1000 = (R: 700)
h) 0,5 x 10 = (R: 5)
i) 3,7 x 1000 = (R: 3700)j) 0,046 x 10 = (R: 0,46)




DIVISÃO

Igualamos as casas decimais do dividendo e do divisor e dividimos como se fossem números naturais.

exemplos

1) efetuar 17,568 : 7,32

Igualando as casas decimais fica : 17568 : 7320 = 2,4

2) Efetuar 12,27 : 3

Igualando as casas decimais fica: 1227 : 300 = 4,09


exercícios

1) Efetuar as divisões:

a) 38,6 : 2 = (R: 19,3)
b) 7,6 : 1,9 = (R: 4)
c) 3,5 : 0,7 = (R: 5)d) 17,92 : 5,6 = (R: 3,2)
e) 155 : 0,25 = ( R: 620)f) 6,996 : 5,83 = (R: 1,2)g) 9,576 : 5,32 = (R: 1,8)
h) 2,280 : 0,05 = (R: 45,6)i) 1,24 : 0,004 = (R: 310)
j) 7,2624 : 2,136 = (R: 3,4)
2) Calcular o valor das expressões

a) 7,2 : 2,4 + 1,7 = (R: 4,7)b) 2,1 + 6,8 : 2 = (R: 5,5 )
c) 6,9 : 3 - 0,71 = (R: 1,59)
d) 8,36 : 2 - 1,03 = (R: 3,15)
e) 1,6 : 4 - 0,12 = (R: 0,28)
f) 8,7 - 1,5 : 0,3 = (R: 3,7)


DIVISÃO POR POTÊNCIA DE 10

Para dividir por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda, uma, duas três , etc casas decimais.


exemplos

a) 379,4 : 10 = 37,94
b) 379,4 : 100 = 3,794
c) 379,4 : 1000 = 0,3794
d) 42,5 ; 1000 = 0,0425

exercícios

1) Efetuar as divisões

a) 3,84 : 10 = (R: 0,384)b) 45,61 : 10 = (R: 4,561)c) 182,9 : 10 = ( R: 18,29)d) 274,5 : 100 = (R: 2,745)e) 84,34 : 100 = (R: 0,8434)f) 1634,2 : 100 =(R: 16,342)
g) 4781,9 : 1000 =( R: 4,7819)
h) 0,012 : 100 =(R: 0,0012)
i) 0,07 : 10 = (R: 0,007)
j) 584,36 : 1000 = (R: 0,58436)

2) efetue as divisões

a) 72 : 10²
b) 65 : 10³
c) 7,198 : 10²
d) 123,45 : 10⁴



POTENCIAÇÃO

A potenciação é uma multiplicação de fatores iguais

Exemplos:

1) (1,5)² = 1,5 x 1,5 = 2,25
2) (0,4)³ = 0,4 x 0,4 x 0,4 = 0,064

vamos lembrar que: são válidas as convenções para os expoentes um e zero.

Exemplos

1) (7,53)¹ = 7,53
2) ( 2,85)⁰ = 1

1) Calcule as potências
a) ( 0,7)²
b) (0,3) ²
c) (1,2) ²
d) (2,5) ²
e) (1,7) ²
f) (8,4) ²
g) (1,1)³
h) (0,1)³
i) (0,15) ²
j) (0,2)⁴

2) Calcule o valor das expressões
a) (1,2)³ + 1,3 =
b) 20 – (3,6) ² =
c) (0,2) ² + (0,8) ² =
d) (1,5) ² - (0,3) ² =
e) 1 – (0,9) ² =
f) 100 x (0,1)⁴ =
g) 4² : 0,5 – (1,5) ² =
h) ( 1 – 0,7) ² + ( 7 – 6)⁵


TRANSFORMAÇÃO DE FRAÇÕES EM NÚMEROS DECIMAIS

Para transformar uma fração em números decimais, basta dividir o numerador pelo denominador (obs o numerador é o números de cima da fração e o denominador o números debaixo)

Exemplos

transformar em números decimais as frações irredutíveis

1) 5/4 = 5 : 4 = 1,25 que será um, número decimal exato
2) 7/9 = 7 : 9 = 0,777... é uma dizima periódica simples
3) 5/6 = 5: 6 = 0,8333...... é uma dizima periódica composta

outros exemplos

a) 4,666... dízima periódica simples (período 6)
b) 2,1818....dízima periódica simples ( período 18)
c) 0,3535.... dízima periódica simples (período 35)
d) 0,8777.... dízima periódica composta (período 7 e parte não periódica 8)
e) 5,413333.... dízima periódica composta (período 3 e parte não periódica 41)

EXERCÍCIOS

1) Transforme em números decimais as frações:

a) 10/4 =
b) 4/5 =
c) 1/3 =
d) 5/3 =
e) 14/5 =
f) 1/6 =
g) 2/11 =
h) 43/99 =
i) 8/3 =

2) Transforme as frações decimais em números decimais :

a) 9/10 = (R: 0,9)
b) 57/10 = (R: 5,7)c) 815/10 = (R: 8,15)
d) 3/100 = (R: 0,03)e) 74/100 = (R: 0,74)
f) 2357/1000 = (R: 2,357)g) 7/1000 = (R: 0,007)
h) 15/10000 = (R: 0,0015)
i) 4782/10000 = (R: 0,4782)

O problema clássico das torneiras

Exercício resolvido: O problema clássico das torneiras
Uma torneira A enche sozinha um tanque em 10h, uma torneira B, enche o mesmo tanque sozinha em 15h. Em quanta horas as duas torneiras juntas encherão o tanque?

Sendo V a capacidade do tanque em 1 hora:

A enche V/10 do tanque; B enche V/15 do tanque

A e B enchem juntas: V/10 + V/15 = V/6

Sendo t o tempo em que as duas juntas enchem o tanque: V/6.t = V

Portanto t = 6horas

1) (Fuvest) O dobro de um número, mais a sua terça parte, mais a sua quarta parte somam 31. Determine o número.

2) (Vunesp) Uma certa importância deve ser dividida entre 10 pessoas em partes iguais. Se a partilha fosse feita somente entre 8 dessas pessoas, cada uma destas receberia R$5.000,00 a mais. Calcule a importância.

3) (Unicamp) Roberto disse a Valéria: "pense um número, dobre esse número, some 12 ao resultado, divida o novo resultado por 2. Quanto deu?". Valéria disse "15", ao Roberto que imediatamente revelou o número original que Valéria havia pensado. Calcule esse número.

4) Obter dois números consecutivos inteiros cuja soma seja igual a 57.

5) (F.C.CHAGAS) Por 2/3 de um lote de peças iguais, um comerciante pagou R$8.000,00 a naus do que pagaria pelos 2/5 do mesmo lote. Qual o preço do lote todo?

6) Uma torneira gasta sozinha 20 min para encher um tanque. Outra torneira sozinha gasta 5min para encher o mesmo tanque. Em quanto tempo, as duas torneiras juntas enchem esse tanque?

Respostas: 1)12; 2)R$200.000,00; 3)9; 4)28 e 29; 5) R$30.000,00; 6) 4min

Fatoração

1) Fatore, colocando os fatores comuns em evidência:

Exemplos:
ax+2a = a(x+2)

a²-b² = (a+b)(a-b)

a² - 4ab + 4b² = (a-2b)²

2x²-2 = 2(x²-1) = 2(x+1)(x-1)

a) 3ax-7ay

b) x³ -x² + x

c) x³y² + x²y² + xy²

d) a²b² - ab³

e) a² + ab + ac + bc

f) x² - b²

g) x²-25

h) (x²/9 - y²/16)

i) x² + 4x + 4

j) a² + 6ab + 9b²

l) 144x²-1

m) ab + ac + 10b + 10c

n) 4a² - 4

o) x³y - xy³

p) x² + 16x + 64

q) 2x² + 4x + 2

r) ax³ + 2a²x² + a³x

Resolução do exercício e) a² + ab + ac + bc = a.(a+b) + c.(a+b) = (a+b).(a+c)

Camadas da terra


Esboço do interior do planeta Terra.
O planeta Terra em toda sua dimensão esférica possui várias camadas que variam quanto a sua composição química e física. Essas camadas estão divididas em:
Crosta: é a parte mais superficial, a primeira camada. Basicamente é formada por composição de granito nos continentes e basalto nos oceanos. Essa camada é onde a vida se desenvolve, e sua espessura é de 5 a 70 km.
Manto: segunda camada da Terra, formada por minerais, como o silício, ferro e magnésio, sua temperatura varia de 100° Celsius a 3500°Celsius, e a profundidade pode variar conforme a localização: oceano ou continente (30 km a 2900 km).
Núcleo: o núcleo corresponde a 1/3 da massa da Terra e contém basicamente elementos metálicos (ferro e níquel). É dividido em núcleo interno e externo, sendo que os dois possuem um raio de 1250 km, e as temperaturas são altíssimas (5000°C).
Ainda dentro das três divisões, existem subdivisões:
Litosfera: é uma fina camada da terra, composta por rochas e solos onde a vida se desenvolve.
Astenosfera: profundidade de 60 a 400 km da superfície terrestre, faz parte do manto superior e é composta por rochas fundidas dentro dessa estrutura predominantemente sólida.
Mesosfera: é uma larga camada sólida, com densidade muito superior a das rochas encontradas na superfície terrestre.
Eduardo de Freitas

Polinômios

1) Calcule:

Exemplo: (3x²+2x-1) + (-2x²+4x+2) = 3x²+2x-1-2x²+4x+2 = x²+6x+1

a) (3a-2b+c) + (-6a-b-2c) + (2a+3b-c)

b) (3x²-1/3) - (6x²-4/5)

c) (2a-3ab+5b) - (-a-ab+2b)

2) Efetue e simplifique:

Exemplo: (2x+3).(4x+1) = 8x²+2x+12x+3 = 8x²+14x+3

a) (2a+3b).(5a-b)

b) (x-y).(x²-xy+y²)

c) (3x-y).(3x+y).(2x-y)

3) Simplifique:

Exemplo: 10x³y²/5x²y = 2xy

a) 8a³b²/2ab²

b) 4a³-2a²+8a / 2a

c) 18x³y²/6x²y³

4) (Fuvest) O valor da expressão a³-3a²x²y², para a=10, x=3 e y=1 é:
(a) 100
(b) 50
(c) 250
(d) -150
(e) -200

5) (Fuvest) Se A=(x-y)/xy, x=2/5 e y=1/2, então A é igual a:
(a) -0,1
(b) 0,2
(c) -0,3
(d) 0,4
(e) -0,5

Respostas dos testes: 4)E, 5)E

Conjunto

Conjunto pode ser definido como uma coleção de elementos, reunião das partes que formam um todo, aglomeração, grupo, série. Como exemplo de conjunto podemos destacar as seguintes situações: o conjunto de estados do Brasil, o conjunto de alunos de uma escola, o conjunto das equipes do campeonato brasileiro, o conjunto dos números naturais, dos números inteiros, racionais, irracionais, reais, primos entre outras situações que envolva a reunião de elementos.
Existem algumas operações que podem ser realizadas entre conjuntos, são elas: intersecção, união e diferença. Considerando os conjuntos A e B contidos num conjunto universo U, as operações entre eles podem ser representadas da seguinte maneira:

Intersecção
A intersecção de A com B é o conjunto formado pelos elementos comuns a A e B.
Notação A ∩ B.
A ∩ B = {x / x Є A e x Є B}

União
A união de A com B é o conjunto formado por todos os elementos pertencentes a A ou a B.
Notação A U B.
A U B = {x / x Є A e x Є B}

Diferença
A diferença entre A e B é o conjunto formado pelos elementos que pertencem a A e não pertencem a B.
Notação A – B.
A – B = {x / x Є A e x B}

Exemplo 1

Sendo A = {1, 2, 3, 4} e B = {2, 4, 6}

A ∩ B = {2, 4}
A U B = {1, 2, 3, 4, 6}
A – B = {1, 3}
B – A = {6}


Exemplo 2

Sendo A = {1, 2, 3, 4, 5, 6, 7, 8, 9} e B = {10, 11, 12, 13, 14, 15}

A ∩ B = Ø (conjunto vazio)
A U B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
A – B = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B – A = {10, 11, 12, 13, 14, 15}

Agricultura de subsistência


Camponês preparando a terra para a plantação
O modelo econômico capitalista atingiu a produção agrícola, na qual ocorreu um rápido processo de modernização no campo (mecanização, utilização de defensivos agrícolas, sementes geneticamente modificadas, etc.) visando à maximização da produção. Esse fenômeno foi responsável pela redução do campesinato ou do pequeno produtor de subsistência. Entretanto, essa modalidade da agricultura resiste à modernização e é muito praticada em várias partes do mundo, em especial na América Latina, Ásia e África.
A agricultura de subsistência se caracteriza pela utilização de métodos tradicionais de cultivo, realizados por famílias camponesas ou por comunidades rurais. Essa modalidade é desenvolvida, geralmente, em pequenas propriedades e a produção é bem inferior se comparada às áreas rurais mecanizadas. Contudo, o camponês estabelece relações de produção para garantir a subsistência da família e da comunidade a que pertence.
Entre os principais produtos cultivados nas propriedades de subsistência estão o arroz, feijão, milho, mandioca, batata, frutas, hortaliças, entre outros. Após suprir as necessidades das pessoas envolvidas, o excedente é trocado ou vendido para a aquisição de produtos que não são cultivados nessas propriedades.
No Brasil, a agricultura de subsistência é praticada nas “roças”, onde são comuns ferramentas como a enxada, machado, foice e arado. Na Ásia, a rizicultura (cultivo de arroz) é muito comum em propriedades coletivas de subsistências. No continente africano, esse tipo de agricultura é muito praticado, além de haver o pastoreio nômade com rebanhos de bovinos, ovinos, equinos e de camelos.
Portanto, os pequenos produtores rurais tentam resistir ao modelo capitalista de produção agrícola, realizando atividades tradicionais com o intuito de produzirem o suficiente para atender às necessidades de consumo. No entanto, eles enfrentam várias dificuldades, sendo uma delas a burocracia para a realização de empréstimos, que beneficiam os grandes latifundiários.
Por Wagner de Cerqueira e Francisco

Conjunto

O agrupamento de termos com características semelhantes é uma definição para a palavra conjunto. Os conjuntos recebem nomes de acordo com a quantidade de elementos que podem vir a ser agrupados.


Conjunto finito

Esse tipo de conjunto representa uma quantidade limitada de elementos. Por exemplo, o conjunto dos números compreendidos entre 1 e 10 será representado da seguinte maneira: {x / 1 < x < 10} ou {2, 3, 4, 5, 6, 7, 8, 9}


Conjunto infinito

Apresenta uma quantidade infinita (ilimitada de termos). Por exemplo:

 O conjunto dos reais é considerado um conjunto infinito, pois não possui fim.
 O conjunto dos números inteiros também é considerado infinito.


Conjunto unitário

Esse conjunto é caracterizado por possuir apenas um único elemento. Por exemplo:

 O conjunto dos números naturais compreendidos entre 0 e 2. Nesse caso existe somente um elemento, o 1. Representamos por {1}.
 O conjunto dos números inteiros compreendidos entre –3 e –1. Entre os números –3 e –1 existe apenas o número inteiro –2. Portanto, a representação deste conjunto unitário é {–2}.


Conjunto Vazio

O conjunto vazio não possui nenhum elemento, a sua representação pode ser feita utilizando duas simbologias: { } ou Ø. Por exemplo:

 O conjunto dos números naturais antecessores ao 0 (zero) é considerado vazio, pois nos números naturais não existe antecessor de zero.
 O conjunto dos números fracionários existentes no conjunto dos números inteiros é considerado um conjunto vazio, pois não existem frações dentre os números inteiros.


Conjunto Universo

É o conjunto representativo de todos os elementos da conjuntura na qual estamos trabalhando, e também de todos os conjuntos relacionados. Na representação do conjunto universo utilizamos a letra maiúscula U.

Compostos orgânicos - nomenclatura Como dar nomes aos compostos orgânicos?

Professor de Matemática e Biologia Antônio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
www.youtube.com/accbarroso1

Antigamente, quando poucos compostos orgânicos eram conhecidos, os novos compostos recebiam um nome escolhido por seu descobridor. Assim, a uréia (CH4N2O) é uma substância cristalina isolada da urina; a morfina (C17H19NO3) é um analgésico cujo nome provém de Morfeu, o deus grego dos sonhos; e o ácido barbitúrico é um agente tranquilizador, que recebeu esse nome em homenagem a uma amiga de seu descobridor, chamada Bárbara.

Com o desenvolvimento da química orgânica no século 19, o número de compostos orgânicos conhecidos também aumentou progressivamente e houve a necessidade de um método sistemático para nomeá-los. O sistema de nomenclatura que apresentaremos neste texto foi desenvolvido pela Internacional Union of Pure and Applied Chemistry (IUPAC - União Internacional de Química Pura e Aplicada).

Iniciemos pelos nomes dos alcanos: sua nomenclatura está diretamente relacionada ao número de átomos de carbono na cadeia, como apresentado na Tabela 1 (abaixo). Com exceção dos quatro primeiros compostos (metano, etano, propano e butano), cujos nomes apresentam raízes históricas, a nomenclatura dos alcanos é baseada nos números gregos. O sufixo "ano" é adicionado ao final de cada nome para identificar a molécula como um alcano.

Assim, pentano é um alcano com cinco átomos de carbono, hexano é um alcano com seis átomos de carbono, e assim por diante. Os alcanos formam a base de nomenclatura para todos os outros compostos orgânicos. Portanto, os nomes dos dez primeiros alcanos acabam memorizados por força do emprego.

Tabela 1 - Nomes dos alcanos de cadeia linear
no* nome no nome
1 Metano 17 Heptadecano
2 Etano 18 Octadecano
3 Propano 19 Nonadecano
4 Butano 20 Icosano
5 Pentano 21 Henicosano
6 Hexano 22 Docosano
7 Heptano 23 Tricosano
8 Octano 30 Triacontano
9 Nonano 31 Hentriacontano
10 Decano 40 Tetracontano
11 Undecano 41 Hentetracontano
12 Dodecano 50 Pentacontano
13 Tridecano 60 Hexacontano
14 Tetradecano 70 Heptacontano
15 Pentadecano 80 Octacontano
16 Hexadecano 100 Hectano
* Número de átomos de carbono

O nome dos compostos orgânicos é constituído de três partes, de acordo com o sistema de nomenclatura da IUPAC: prefixo (composto principal), infixo (ligações simples, duplas ou triplas) e sufixo (função orgânica).

Conforme mostra o Quadro 1 (abaixo), o prefixo indica a cadeia principal, ou seja, a parte essencial da molécula nos diz quantos átomos de carbono fazem parte dessa cadeia; o infixo indica a presença de ligações simples, duplas ou triplas entre os átomos de carbono; e, finalmente, o sufixo identifica a função química, ou seja, a classe orgânica à qual pertence a molécula.


Outro aspecto importante da nomenclatura dos compostos orgânicos é o substituinte da molécula. Como, por exemplo, os radicais do grupo alquila (estrutura resultante da remoção de um átomo de hidrogênio de um alcano). Antes de entender o processo de construção do nome de um composto orgânico é bom compreender o grupo alquila.

Grupos alquila
Os grupos alquila são nomeados substituindo-se a terminação - ano do alcano de origem - pelo sufixo "ila". Por exemplo, a remoção de um átomo de hidrogênio do metano, CH4, resulta em um grupo metila, -CH3. A remoção de um átomo de hidrogênio do etano, CH3CH3, resulta em um grupo etila, -CH2CH3. De modo semelhante, a remoção de um átomo de hidrogênio do carbono da extremidade de qualquer n-alcano origina uma série de grupos alquila de cadeia linear exibidos no Esquema 1:


Da mesma forma que os grupos alquila de cadeia linear são gerados pela remoção de um hidrogênio de um carbono final, como mostrado no esquema, outros grupos alquila são gerados pela remoção de um átomo de hidrogênio de um carbono interno.

Dois grupos alquila com três átomos de carbono e quatro grupos alquila com quatro átomos de carbono também são possíveis. Veja, a seguir, o Esquema 2:


Após essa breve discussão sobre o grupo alquila, fica mais fácil a assimilação do processo de definição dos nomes dos compostos orgânicos. O processo será explicado usando como base os alcanos, pois esse método acaba se aplicando, de modo similar, às classes de outros compostos orgânicos.

A maioria dos alcanos (de cadeia ramificada) é nomeada seguindo as quatro etapas descritas a seguir. Para alguns poucos compostos é necessária uma quinta etapa.

# Etapa n. 1: Identifique a cadeia principal

(a) Identifique a cadeia de átomos de carbono mais longa e contínua, e use o nome dessa cadeia como o nome da cadeia principal. A cadeia mais longa nem sempre está aparente na representação utilizada para descrever a molécula.

(b) Se duas cadeias diferentes de mesmo comprimento estiverem presentes, escolha aquela com um número maior de ramificações.

Etapa n. 2: Numere os átomos da cadeia principal

(a) Inicie pela extremidade mais próxima da primeira ramificação, numere cada átomo de carbono na cadeia principal.

b) Se existirem ramificações situadas à mesma distância das extremidades da cadeia principal, comece a numerar pela extremidade mais próxima da segunda ramificação.

Etapa n. 3: Identifique e numere os substituintes

(a) Atribua um número para cada grupo substituinte, de acordo com seu ponto de ligação na cadeia principal.

(b) Se existirem dois substituintes no mesmo carbono, eles devem ter o mesmo número. Deve haver muitos números no nome, tantos quantos os de substituintes.


Reprodução
# Etapa n. 4: Escreva o nome do composto com uma única palavra
Use os hífens para separar os diferentes prefixos e utilize vírgulas para os números. Se dois ou mais substituintes estiverem presentes, coloque-os em ordem alfabética. Se forem iguais, use um dos prefixos múltiplos di-, tri-, tetra-, e assim por diante.

Etapa n. 5: Nomeie um substituinte complexo como se ele fosse um composto

Em alguns casos mais complexos, há a necessidade de um quinto passo. Isso geralmente acontece quando um substituinte da cadeia principal é um substituinte com cadeia ramificada.

Quando o nome de um alcano é descrito, o prefixo isso- não fica separado por hífens, sendo considerado parte do nome do grupo alquila. Os prefixos sec- e tert- não são considerados parte do nome. Dessa forma, isopropila e isobutila são colocados em ordem alfabética considerando-se a letra i; contudo, sec-butila e tert-butila ficam em ordem alfabética, de acordo com a letra b.

Explicamos aqui alguns aspectos mais triviais da nomenclatura dos compostos orgânicos. Contudo, como já frisamos, o que foi discutido pode auxiliar no entendimento da construção dos nomes dos mais variados compostos orgânicos.

Sugerimos a leitura do texto Compostos orgânicos - Fórmulas estruturais e principais classes para um entendimento mais geral dos principais compostos estudados na química orgânica.

Fontes
K. P. C. Vollhardt, N. E. Schore. Química Orgânica - Estrutura e Função. 4ª Ed. - Porto Alegre: Bookman, 2004. T. W. G. Solomons, C. B. Fryle. Química Orgânica - volume 1. 8ª Ed. - Rio de Janeiro: LTC, 2005. P. Y. Bruice. Química Orgânica - volume 1. 4ª Ed. - Rio de Janeiro: Pearson / Prentice Hall.

Purificação de Substâncias Orgânicas


Na natureza raramente encontramos substâncias puras. Em função disso, é necessário utilizarmos métodos de separação se quisermos obter uma determinada substância.

Nós reconhecemos que uma substância é pura ou purificada, ou que ela foi realmente separada das outras substâncias que a acompanhavam numa mistura, pelas propriedades que a substância nos apresenta.

Façamos uma comparação. Como nós reconhecemos na rua, uma pessoa conhecida ou um parente? Evidentemente, pelas características dessa pessoa como sexo, estatura, fisionomia, cor da pele, cabelos, olhos, etc... Analogamente, nós reconhecemos uma substância química por suas propriedades características, como cor, brilho, cheiro, etc...

De um modo mais geral podemos dizer que as propriedades das substâncias podem ser classificadas em propriedades gerais, propriedades funcionais e propriedades específicas.

O método de recristalização de uma substância é basicamente quando os dois (ou mais) sólidos são solúveis num mesmo líquido, podendo acontecer que, durante a evaporação do solvente, um dos sólidos venha a se cristalizar antes, separando-se do outro sólido que ainda permanece em solução.

Pode acontecer de um dos sólidos ser insolúvel no solvente (então cristaliza-se somente o puro). Uma bolinha de naftalina (naftaleno comercial), por exemplo, não contém apenas naftaleno, mas também algumas impurezas. Essas impurezas podem ser separadas através de dissolução seguida de uma filtração e evaporação, se as impurezas forem solúveis no solvente que dissolve o naftaleno.

Para se efetuar a purificação de um composto orgânico por recristalização segue-se basicamente o seguinte procedimento (vamos utilizar como exemplo a Naftalina):

1. Triture aproximadamente 4 bolinhas de Naftalina em um almofariz.
2. Pese 3,0 g (precisão 0,1 mg) de Naftalina triturada (pulverizada).
3. Colocar em um becher de 250 ml.
4. Junte 50 ml de álcool e aqueça cuidadosamente em banho-maria (cuidado: etanol é inflamável), até a dissolução total da Naftalina.
5. Dobre o papel de filtro de maneira a obter um cone ondulado (como se fosse um leque).
6. Filtre a solução quente, recolhendo o filtrado em um outro becher de 250 ml (use um funil de haste curta).
7. Deixe esfriar o filtrado a temperatura ambiente, e depois em banho de gelo.
8. Pese um papel de filtro (precisão 0,1 mg), já cortado anteriormente para que se adapte ao funil de Büchner.
9. Filtre a solução anterior à vácuo e deixe os cristais secando (a vácuo).
10. Pese a Naftalina recristalizada e determine a quantidade de impurezas.

Considerações sobre a Purificação e Recristalização da Naftalina (Composto Orgânico).

Neste experimento, deve-se aquecer a naftalina até a dissolução total em álcool porque somente a naftalina vai dissolver-se no mesmo e as outras impurezas ficarão insolúveis em meio ao álcool ou evaporarão.

Para uma separação mais eficiente das impurezas deve-se filtrar a solução ainda quente para que não ocorra da naftalina recristalizar-se e ficar retida no filtro junto com as impurezas (a naftalina quente não fica retida no filtro pois, ela está dissolvida em meio ao álcool e suas moléculas estão "espalhadas" entre as moléculas do álcool e como este passa pelo filtro sem ficar retido, ela também passa deixando para trás as impurezas).

Autoria: Fábio Schwarb do Nascimento

Regra de Três Simples e composta



Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos.

Passos utilizados numa regra de três simples:

1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência.

2º) Identificar se as grandezas são diretamente ou inversamente proporcionais.

3º) Montar a proporção e resolver a equação.

Exemplos:

1) Com uma área de absorção de raios solares de 1,2m², uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m², qual será a energia produzida?

Solução: montando a tabela:

Área (m²) Energia (Wh)
1,2--------400
1,5-------- x

Identificação do tipo de relação:

Área--------Energia
1,2---------400↓
1,5---------- X↓



Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
Observe que: Aumentando a área de absorção, a energia solar aumenta.
Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos:


Área--------Energia
1,2---------400↓
1,5-----------x↓


1,2X = 400.1,5


x= 400.1,5 / 1,2

x= 500

Logo, a energia produzida será de 500 watts por hora.


2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h?

Solução: montando a tabela:

1) Velocidade (Km/h) Tempo (h)
400-----------------3
480---------------- x

2) Identificação do tipo de relação:

velocidade----------tempo
400↓-----------------3↑
480↓---------------- x↑

Obs: como as setas estão invertidas temos que inverter os numeros mantendo a primeira coluna e invertendo a segunda coluna ou seja o que esta em cima vai para baixo e o que esta em baixo na segunda coluna vai para cima

velocidade----------tempo
400↓-----------------X↓
480↓---------------- 3↓



480X = 400 . 3

x = 400 . 3 / 480

X = 2,5


Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
Observe que: Aumentando a velocidade, o tempo do percurso diminui.

Como as palavras são contrárias (aumentando - diminui), podemos afirmar que as grandezas são inversamente proporcionais. Assim sendo, colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna. Montando a proporção e resolvendo a equação temos:



Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos.




3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria se comprasse 5 camisetas do mesmo tipo e preço?

Solução: montando a tabela:

Camisetas----preço (R$)
3------------- 120
5---------------x

3x=5.120

o três vai para o outro lado do igual dividindo

x = 5.120/3

x= 200


Observe que: Aumentando o número de camisetas, o preço aumenta.
Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Montando a proporção e resolvendo a equação temos:



Logo, a Bianca pagaria R$200,00 pelas 5 camisetas.


4) Uma equipe de operários, trabalhando 8 horas por dia, realizou determinada obra em 20 dias. Se o número de horas de serviço for reduzido para 5 horas, em que prazo essa equipe fará o mesmo trabalho?

Solução: montando a tabela:

Horas por dia-----Prazo para término (dias)

8↑------------------------20↓
5↑------------------------x ↓

invertemos os termos

Horas por dia-----Prazo para término (dias)

8↑-------------------------x↑
5↑------------------------20↑


5x = 8. 20

passando-e o 5 para o outro lado do igual dividindo temos:

5x = 8. 2 / 5

x = 32

Observe que: Diminuindo o número de horas trabalhadas por dia, o prazo para término aumenta.
Como as palavras são contrárias (diminuindo - aumenta), podemos afirmar que as grandezas são inversamente proporcionais. Montando a proporção e resolvendo a equação temos:



EXERCICIOS

1) Uma roda dá 80 voltas em 20 minutos. Quantas voltas dará em 28 minutos? (R:112)

2) Com 8 eletricistas podemos fazer a instalação de uma casa em 3 dias. Quantos dias levarão 6 eletricistas para fazer o mesmo trabalho? (R: 4)

3) Com 6 pedreiros podemos construir um a parede em 8 dias. Quantos dias gastarão 3 pedreiros para fazer a mesma parede? (R:16)

4) Uma fabrica engarrafa 3000 refrigerantes em 6 horas. Quantas horas levará para engarrafar 4000 refrigerantes? (R: 8)

5) Quatro marceneiros fazem um armário em 18 dias. Em quantos dias 9 marceneiros fariam o mesmo armário? (R:8)
6) Trinta operários constroem uma casa em 120 dias. Em quantos dias 40 operários construiriam essa casa? (R: 90)

7) Uma torneira despeja em um tanque 50 litros de água em 20 minutos. Quantas horas levará para despejar 600 litros? (R: 4)

8) Na construção de uma escola foram gastos 15 caminhões de 4 m³ de areia. Quantos caminhões de 6 m³ seriam necessários para fazer o mesmo trabalho? (R: 10)

9) Com 14 litros de tinta podemos pintar uma parede de 35 m². Quantos litros são necessários para pintar uma parede de 15 m²? (R: 6)

10) Um ônibus, a uma velocidade média de 60 km/h, fez um percurso em 4 horas. Quanto levará, aumentando a velocidade média para 80 km/h? (R:3)

11) Para se obterem 28 kg de farinha, são necessários 40 kg de trigo. Quantos quilogramas do mesmo trigo são necessários para se obterem 7 kg de farinha? (R:10)

12) Cinco pedreiros fazem uma casa em 30 dias. Quantos dias levarão 15 pedreiros para fazer a mesma casa? (R:10)

13) Uma máquina produz 100 peças em 25 minutos. Quantoas peças produzirá em 1 hora? (R:240)

14) Um automóvel faz um percurso de 5 horas à velocidade média de 60 km/h. Se a velocidade fosse de 75 km /h quantas horas gastaria para fazer o mesmo percurso? (R:4)

15)Uma maquina fabrica 5000 alfinetes em 2 horas. Qauntos alfinetes ela fabricará em 7 horas? (R:17.500)

16) Quatro quilogramas de um produto químico custam R$ 24.000,00 quanto custarão 7,2 Kg desse mesmo produto? (R:43.200,00)

17) Oito operarios fazem um casa em 30 dias. quantos dias gastarão 12 operários para fazer a mesma casa? (R:20)
18) Uma torneira despeja 2700 litros de água em 1 hora e meia. Quantos litros despeja em 14 minutos? (R: 420)

19) Quinze homens fazem um trabalho em 10 dias, desejando-se fazer o mesmo trabalho em 6 dias, quantos homens serão necessários? (R:25)
20) Um ônibus, à velocidade de 90 Km/h, fez um percurso em 4 horas. Quanto tempo levaria se aumentasse a velocidade para 120 Km/h? (R: 3)

21) Num livro de 270 páginas, há 40 linhas em cada página. Se houvesse 30 linhas, qual seria o número de páginas desse livro? (R:360)




REGRA DE TRÊS COMPOSTA


regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.

Exemplos:

1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3?

Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem:
Horas --------caminhões-----------volume
8↑----------------20↓----------------------160↑
5↑------------------x↓----------------------125↑

A seguir, devemos comparar cada grandeza com aquela onde está o x.
Observe que:
Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional (seta para cima na 1ª coluna).
Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas.
Montando a proporção e resolvendo a equação temos:

Horas --------caminhões-----------volume
8↑----------------20↓----------------------160↓
5↑------------------x↓----------------------125↓


20/ x = 160/125 . 5/8 onde os temos da ultima fração foram invertidos

simplificando fica

20/x = 4/5

4x = 20 . 5

4x = 100

x = 100 / 4

x = 25

Logo, serão necessários 25 caminhões

2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias?
Solução: montando a tabela:



Homens----- carrinhos------ dias
8-----------------20--------------5
4-------------------x-------------16

Observe que:
Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional (não precisamos inverter a razão).
Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com o produto das outras razões.
Montando a proporção e resolvendo a equação temos:

20/x= 8/4 . 5/16

20 / x = 40 / 64

40x = 20 . 64

40 x = 1280

x = 1280 / 40

x = 32

Logo, serão montados 32 carrinhos



EXERCICIOS


1) Uma olaria produz 1470 tijolos em 7 dias, trabalhando 3 horas por dia. Quantos tijolos produzirão em 10 dias, trabalhando 8 horas por dia? (R=5600)

2) Oitenta pedreiros constroem 32m de muro em 16 dias. Quantos pedreiros serão necessários para construir 16 m de muro em 64 dias? (R=10)

3) Um ônibus percorre 2232 km em 6 dias, correndo 12 horas por dia. Quantos quilômetros percorrerão em 10 dias, correndo 14 horas por dia? (R=4340)

4) Numa fábrica, 12 operários trabalhando 8 horas por dia conseguem fazer 864 caixas de papelão. Quantas caixas serão feitas por 15 operários que trabalhem 10 horas por dia? (R=1350)

5) Vinte máquinas, trabalhando 16 horas por dia, levam 6 dias para fazer um trabalho. Quantas máquinas serão necessárias para executar o mesmo serviço, se trabalharem 20 horas por dia durante 12 dias? (R=8)

6) Numa indústria têxtil, 8 alfaiates fazem 360 camisas em 3 dias quantos alfaiates são necessários para que sejam feitas 1080 camisas em 12 dias ? (R=6)

7) Um ciclista percorre 150 km em 4 dias pedalando 3 horas por dia. Em quantos dias faria uma viagem de 400 km, pedalando 4 horas por dia? (R=8)

8) Uma máquina fabricou 3200 parafusos, trabalhando 12 horas por dia durante 8 dias. Quantas horas deverá trabalhar por dia para fabricar 5000 parafusos em 15 dias? (R=10)

9) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas? (R: 6 horas.)

10) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão? (R: 35 dias).
11) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m? (R: 15 dias.)

12) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h? (R: 10 horas por dia.)

13) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos? (R: 2025 metros.)

14) Para pintar 20 m de muro de 80 cm de altura foram gastas 5 latas de tinta. Quantas latas serão gastas para pintar 16 m de muro de 60 cm de altura? (R: 3 latas)

15) Três máquinas imprimem 9000 cartazes em 12 dias. Em quantos dias 8 máquinas imprimem 12000 cartazes, trabalhando o mesmo número de horas por dia (R: 6 dias )

16) Na fabricação de 20 camisetas, 8 máquinas gatam 4 horas. Para produzir 15 camisas, 4 máquinas quantas horas gastam? (R: 6 horas)

17) Nove operários produzem 5 peças em 8 dias. Quantas peças serão produzidas por 12 operários em 6 dias ? (R: 5 peças)

18) Em 7 dias, 40 cachorros consomem 100 Kg de ração, Em quantos dias 15 cachorros consumirão 75 kg de ração ? (R: 14 dias)