Conjunto pode ser definido como uma coleção de elementos, reunião das partes que formam um todo, aglomeração, grupo, série. Como exemplo de conjunto podemos destacar as seguintes situações: o conjunto de estados do Brasil, o conjunto de alunos de uma escola, o conjunto das equipes do campeonato brasileiro, o conjunto dos números naturais, dos números inteiros, racionais, irracionais, reais, primos entre outras situações que envolva a reunião de elementos.
Existem algumas operações que podem ser realizadas entre conjuntos, são elas: intersecção, união e diferença. Considerando os conjuntos A e B contidos num conjunto universo U, as operações entre eles podem ser representadas da seguinte maneira:
Intersecção
A intersecção de A com B é o conjunto formado pelos elementos comuns a A e B.
Notação A ∩ B.
A ∩ B = {x / x Є A e x Є B}
União
A união de A com B é o conjunto formado por todos os elementos pertencentes a A ou a B.
Notação A U B.
A U B = {x / x Є A e x Є B}
Diferença
A diferença entre A e B é o conjunto formado pelos elementos que pertencem a A e não pertencem a B.
Notação A – B.
A – B = {x / x Є A e x B}
Exemplo 1
Sendo A = {1, 2, 3, 4} e B = {2, 4, 6}
A ∩ B = {2, 4}
A U B = {1, 2, 3, 4, 6}
A – B = {1, 3}
B – A = {6}
Exemplo 2
Sendo A = {1, 2, 3, 4, 5, 6, 7, 8, 9} e B = {10, 11, 12, 13, 14, 15}
A ∩ B = Ø (conjunto vazio)
A U B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
A – B = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B – A = {10, 11, 12, 13, 14, 15}
Nenhum comentário:
Postar um comentário