terça-feira, 24 de dezembro de 2019

Área de um triângulo pela geometria analítica

Na geometria plana encontramos a área de um triângulo fazendo uma relação com o valor de suas dimensões, e na trigonometria, com o valor do seno de um ângulo interno relacionado com os lados do triângulo é possível também encontrar a sua área.

A geometria analítica também possui seus artifícios para o cálculo da área de um triângulo, nesse caso é necessário que saibamos as coordenadas de seus três vértices para que o triângulo possa ser representado em um plano cartesiano.

Considere o triângulo de vértices A(xA, yA), B(xB, yB) e C(xC, yC), veja a sua representação em um plano cartesiano:



A partir dessa representação podemos dizer que o cálculo da área (A) de um triângulo através dos conhecimentos da geometria analítica é dado pelo determinante dos vértices dividido por dois.

A = |D|
2

Onde D = .

Exemplos: A área de um triângulo é 25/2 e seus vértices são (0,1), (2,4) e (-7,k). Nesse caso qual será o possível valor de k?

Sabemos que a área A = |D|, portanto é preciso que encontremos o valor de D.
2

D =
D = -7 + 2k + 28 -2
D = 2k + 19

Substituindo a fórmula teremos:

A = |D|
2

25= 2k + 19
2 2

25 = 2k + 19
25 – 19 = 2k
6 = 2k
6:3 = k
k = 3
mundoeducacao

Nenhum comentário:

Postar um comentário