Mostrando postagens com marcador 3º Ano Ensino Médio. Mostrar todas as postagens
Mostrando postagens com marcador 3º Ano Ensino Médio. Mostrar todas as postagens

quarta-feira, 15 de setembro de 2021

Equação da reta

Em um plano cartesiano as retas podem ser paralelas ou coincidentes, se no ponto comum as duas retas formarem um ângulo de 90° graus podemos dizer que são perpendiculares, para que isso seja verdade os seus coeficientes deverão ser o oposto do inverso um do outro. Veja alguns exemplos onde aplicamos essa comparação dos coeficientes de duas retas coincidentes e perpendiculares.

Exemplo 1: obtenha a equação geral da reta t que passa pelo ponto P(9,-1) e é perpendicular à reta s: y = x/5 + 2.

Resolução

A reta s tem equação reduzida igual a y = x/5 + 2, nela podemos identificar o coeficiente angular de s: ms = 1/5. Como foi dito no enunciado que as retas s e t são perpendiculares, podemos considerar as seguintes informações pertencentes à reta t:

t: P(9,-1) e seu coeficiente será o oposto do inverso do coeficiente da reta s: mt = -5. Com essas informações e utilizando a definição de equação fundamental da reta podemos encontrar a equação geral da reta t.

y – y0 = m(x – x0)
y – (-1) = -5(x – 9)
y + 1 = - 5x + 45
5x + y – 45 = 0 é a equação geral da reta t.

Exemplo 2: Considerando o gráfico:


Responda:
a) Obtenha uma equação da reta r.

Com os pontos pertencentes à reta r, podemos calcular seu coeficiente que será igual à mr = -2, com esse valor mais um dos dois pontos e utilizando a definição de equação fundamental da reta, a reta r terá a seguinte equação:

y – y0 = m(x – x0)
y – 0 = - 2(x + 1)
2x – y – 2 = 0

b) Obtenha a equação da reta s que passa pelo ponto P e é perpendicular à reta r.
Como as retas r e s são perpendiculares e o coeficiente da reta r é mr = -2, podemos concluir pela definição de coeficiente de retas paralelas que o coeficiente da reta s será ms = 1/2, como o ponto P pertence à reta s, concluímos pela definição da equação fundamental da reta, que a reta s terá equação igual a:

y – y0 = m(x – x0)
y + 2 = 1/2 (x – 5)
y + 2 = x/2 – 5/2
x – 2y – 9 = 0

c) Determinar o ponto A (x,y) de interseção de r com a reta s obtida no item b.

O ponto A irá pertencer à reta r e para que esse mais os outros dois pontos pertençam à reta r eles deverão obedecer à condição de alinhamento de três pontos, que diz que os coeficientes angulares das semi-retas formadas pelos pontos deverão ser iguais. Assim iremos obter uma equação em função dos valores do ponto A (x,y).

-2x – y = 2

O ponto A e P pertencem à reta s, com eles é possível calcular o coeficiente angular da reta s:
y + 2 = 1
x – 5 2

x – 2y = 9

Com essas duas equações podemos formar um sistema que terá como solução o par ordenado (1,-4) que corresponde ao ponto A.

Pesquisa de raízes racionais aula 18

Monômios e Polinômios

Professor de Matemática Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
extraído do www.mundoeducacao.com.br
Monômio
Expressão algébrica definida apenas pela multiplicação entre o coeficiente e a parte literal. Exemplos:

2x, 4ab, 10x², 20xyz, 30abc, 2z, y, b³, 100ax³

Monômios semelhantes
Expressões algébricas que possuem a parte literal semelhante.
Exemplos:

2x e 4x
7x² e 8x²
10ab e 3ab
2ya e 6ya
7bc e 9cb
100z e 20z


Adição e subtração de monômio

A adição e a subtração de monômio devem ser efetuadas quando as partes literais são semelhantes. Exemplos:

2a + 7a = 9a
5x – 2x = 3x
10ab – 9ab = ab
6y – 9y = – 3y
7bc + 3cb = 10bc ou 10cb
– 12xy – 10xy = – 22xy


Multiplicação entre monômios
Ao multiplicar monômios em que as partes literais são semelhantes devemos seguir os seguintes passos:
1º passo: multiplicar os coeficientes
2º passo: conservar a parte literal e somar os expoentes.

Exemplos:

2x * 2x = 4x²
4xy * 6xy² = 24x²y³
10a²b * 9a²b³ = 90a4b4
5xyz * 6x²y³z = 30x³y4


Ao multiplicar monômios com parte literal diferente devemos:
1º passo: multiplicar os coeficientes
2º passo: se as letras são diferentes, agrupe-as
Exemplo:
2x * 3y = 6xy
4ab * 5z = 20abz
20c * 2ab = 40abc
x * 6a = 6xa


Divisão entre monômios

Parte literal semelhantes
1º passo: dividir os coeficientes.
2º passo: conservar a parte literal e subtrair os expoentes.

Exemplo:
5x³ : 5x² = x
10x²y² : 2x = 5xy²
30z : 5z = 6
20b³ : 10b = 2b²


Polinômios

Expressão algébrica composta por dois ou mais monômios com a existência de operações entre eles.
Exemplos:

2x² + 7x – 6
10x³ + x² – 9x
6x + 5
120x² – 10x + 9
14x4 + 7x³ – 20x² – 60x – 100

Binômio de Newton aula 1

Circunferência

Introdução

Este trabalho irá abordar sobre circunferência.
Circunferência é o conjunto de todos os pontos de um plano eqüidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência.
A circunferência possui características não comumente encontradas em outras figuras planas.
Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo 0 é menor ou igual que uma distância r dada.


Circunferência
A circunferência é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência.
A circunferência possui características não comumente encontradas em outras figuras planas, como o fato de ser a única figura plana que pode ser rodada em torno de um ponto sem modificar sua posição aparente. É também a única figura que é simétrica em relação a um número infinito de eixos de simetria. A circunferência é importante em praticamente todas as áreas do conhecimento como nas Engenharias, Matemática, Física, Química, Biologia, Arquitetura, Astronomia, Artes e também é muito utilizado na indústria e bastante utilizada nas residências das pessoas.



Algumas definições

Raio - Raio de uma circunferência (ou de um círculo) é um segmento de reta com uma extremidade no centro da circunferência e a outra extremidade num ponto qualquer da circunferência.
Arco – é uma parte da circunferência limitada por dois pontos, que se chamam extremidades do arco.


Corda – é um segmento de infinitos pontos alinhados, cujos pontos extremos com um ponto da circunferência. Quando esse segmento passa pelo centro da circunferência, temos o que chamamos de diâmetro.

O diâmetro é sempre a corda maior: como é a corda que passa pelo centro, sua medida é igual a duas vezes a medida do raio.
Assim, para medir a maior distância entre dois pontos de uma circunferência, deve medir o diâmetro, ou seja, o seu instrumento de medida (régua, trena ou fita métrica) deve passar pelo centro da circunferência. Em alguns casos, porém, apenas uma parte da circunferência é utilizada.

Tangente – é a reta que tem um único ponto comum à circunferência, este ponto é conhecido como ponto de tangência ou ponto de contato.

Secante – é a reta que intercepta a circunferência em dois pontos distintos, se essa reta intercepta a circunferência em dois pontos quaisquer, podemos dizer também que é a reta que contem uma corda.
Para simbolizar a corda que une os pontos P e Q, utilizamos a notação de segmento de reta, ou seja, corda PQ.
Por outro lado, o arco também começa em P e termina em Q mas, como você pode ver, a corda e o arco são diferentes e por isso a simbologia também deve ser diferente. Para o arco, usamos PQ.
Da mesma forma que a maior corda é o diâmetro, o maior arco é aquele que tem as
extremidades em um diâmetro. Esse arco é chamado semicircunferência, e a parte do círculo correspondente é chamada semicírculo.


O Comprimento da circunferência
Quanto maior for o raio (ou o diâmetro) de uma circunferência maior será o seu comprimento. Imagine que você vai caminhar em torno de uma praça circular: você andará menos em uma praça com 500 metros de diâmetro do que numa praça com 800 metros de diâmetro.
No exemplo abaixo, cada uma das três circunferências foi cortada no ponto marcado com uma tesourinha, e a linha do traçado de cada uma delas foi esticada.


Círculo

Círculo (ou disco) é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo 0 é menor ou igual que uma distância r dada. Quando a distância é nula, o círculo se reduz a um ponto. O círculo é a reunião da circunferência com o conjunto de pontos localizados dentro da mesma. É uma figura geométrica bastante comum em nosso dia-a-dia. Observe à sua volta quantos objetos circulares estão presentes: nas moedas, nos discos, a mesa de refeição...
Agora pense, o que faríamos para:
* riscar no tecido o contorno de uma toalha de mesa redonda?
* desenhar um círculo no seu caderno?
* marcar o limite das escavações de um poço no chão?
Quando falamos em círculo, ninguém tem dúvida quanto ao formato dessa figura geométrica. No entanto, em geometria, costuma-se fazer uma pequena distinção entre círculo e circunferência, sobre a qual você já deve ter ouvido falar.
A superfície de uma moeda, de uma pizza ou de um disco é um círculo.
Quando riscamos no papel ou no chão apenas o contorno do círculo, este contorno é chamado circunferência. O compasso é um instrumento utilizado para desenhar circunferências.

O compasso possui duas “pernas”, uma delas tem uma ponta metálica, que deve ser assentada no papel, no local que será o centro da circunferência, a outra ponta,
com a grafite, deve ser girada para obter o traçado da circunferência.

Antes de traçar uma circunferência, devemos decidir qual será a abertura entre as pernas do compasso.
À distância entre as duas pontas do compasso define o raio da circunferência.
Utilizando uma tachinha, um barbante e um giz podem-se riscar uma circunferência no chão ou no tecido. Os operários, jardineiros e pedreiros, por exemplo, costumam usar uma corda e duas estacas.

Equação reduzida da circunferência
Uma circunferência é determinada quando conhecemos a posição do seu centro e o valor do seu raio. Imaginando no plano cartesiano uma circunferência de centro no ponto C = (a, b) e com raio R, vamos representar por P = (x, y) um ponto qualquer que pertence a essa circunferência. Que propriedade tem o ponto P?
Se P pertence à circunferência, sua distância até o centro é igual ao raio.
Como a distância do ponto C = (a, b) ao ponto P = (x, y) é igual a R, usando a fórmula da distância entre dois pontos temos:
(x - a)2 + (y - b)2 = R
Elevando ao quadrado os dois membros, a expressão obtida é a equação da circunferência de centro (a, b) e raio R.




Portanto, (x - a)² + (y - b)² = r² é a equação reduzida da circunferência e permite determinar os elementos essenciais para a construção da circunferência: as coordenadas do centro e o raio.
Observação: Quando o centro da circunferência estiver na origem (C(0,0)), a equação da circunferência será x² + y² = r² .

Exemplo:
Seja uma circunferência cuja equação é:

(x - 2) ² + (y - 3)² = 100
Verificar se a circunferência passa pela origem ,quais as coordenadas do centro e quanto vale o raio:

Pela expressão temos que: R = 10 e C(2,3)


Fazendo x=0 e y=0, temos que: (-2) ² + (-3) ² = 13
Como 13 é diferente de 100, logo a circunferência não passa pela origem.


Equação geral da circunferência
Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:

Como exemplo, vamos determinar a equação geral da circunferência de centro C(2, -3) e raio r = 4.
A equação reduzida da circunferência é:


(x - 2)² +(y + 3) ² = 16
Desenvolvendo os quadrados dos binômios, temos:



Determinação do centro e do raio da circunferência, dada a equação geral
Dada a equação geral de uma circunferência, utilizamos o processo de fatoração de trinômio quadrado perfeito para transformá-la na equação reduzida e , assim, determinamos o centro e o raio da circunferência.
Para tanto, a equação geral deve obedecer a duas condições:
* os coeficientes dos termos x² e y² devem ser iguais a 1;
* não deve existir o termo xy.
Então, vamos determinar o centro e o raio da circunferência cuja equação geral é

x² + y² - 6x + 2y - 6 = 0.
Observando a equação, vemos que ela obedece às duas condições. Assim:
* 1º passo: agrupamos os termos em x e os termos em y e isolamos o termo independente

x² - 6x + _ + y² + 2y + _ = 6
* 2º passo: determinamos os termos que completam os quadrados perfeitos nas variáveis x e y, somando a ambos os membros as parcelas correspondentes

* 3º passo: fatoramos os trinômios quadrados perfeitos

(x - 3) ² + (y + 1) ² = 16
* 4º passo: obtida a equação reduzida, determinamos o centro e o raio



Posição de um ponto em relação a uma circunferência
Em relação à circunferência de equação (x - a) ² + (y - b) ² = r², o ponto P(m, n) pode ocupar as seguintes posições:
a) P é exterior à circunferência

b) P pertence à circunferência

c) P é interior à circunferência

Assim, para determinar a posição de um ponto P(m, n) em relação a uma circunferência, basta substituir as coordenadas de P na expressão (x - a) ² + (y - b) ² - r²:
* se (m - a) ² + (n - b) ² - r² > 0, então P é exterior à circunferência;
* se (m - a) ² + (n - b) ² - r² = 0, então P pertence à circunferência;
* se (m - a) ² + (n - b) ² - r² <>P é interior à circunferência.

Posição de uma reta em relação a uma circunferência
Dadas uma reta s: Ax + Bx + C = 0 e uma circunferência α de equação (x - a) ² + (y - b)² = r², vamos examinar as posições relativas entre s e α :







Também podemos determinar a posição de uma reta em relação a uma circunferência calculando a distância da reta ao centro da circunferência. Assim, dadas a reta s: Ax + By + C = 0 e a circunferência α :
(x - a) ² + ( y - b ) ² = r², temos:


Assim:




Condições de tangência entre reta e circunferência
Dados uma circunferência α e um ponto P(x, y) do plano, temos:

a) se P pertence à circunferência, então existe uma única reta tangente à circunferência por P


b) se P é exterior à circunferência, então existem duas retas tangentes a ela por P



c) se P é interior à circunferência, então não existe reta tangente à circunferência passando pelo ponto P


Posições Relativas entre Ponto e Circunferência

* Externo:
d > r ;
d - r > 0

* Interno:
d <>
d - r <>

* Pertence à Circunferência:
d = r
d - r = 0


Posições Relativas entre Reta e Circunferência
* Tangente:

A reta tem um só ponto A comum com a circunferência, e os outros pontos da reta são exteriores à circunferência. A tangente a um círculo, num ponto, é a perpendicular ao raio que tem extremidade nesse ponto.
d = r
* Secante:

A reta tem dois pontos distintos A e B comuns com a circunferência.
d <>

* Externo:

A reta não tem ponto comum com a circunferência. Todos os pontos da reta são exteriores à circunferência
d > r

Posições Relativas entre duas Circunferências


* Não se interceptam: (d = distância entre os Centros)
* Externamente:
A duas circunferências não têm ponto em comum.
d > r1 + r2
* Internamente:
As duas circunferências não têm pontos em comum e os pontos de uma delas são interiores à outra.
d < |r1 - r2|

* São Tangentes:
* Externamente:
As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são exteriores à outra. O ponto comum é o ponto de tangência.
d = r1 + r2
* Internamente:
As duas circunferências têm um único ponto em comum e os demais pontos de uma delas são interiores à outra. O ponto comum é o ponto da tangência.
d = |r1 - r2|
* São Secantes:
As duas circunferências têm dois pontos distintos em comum. São denominadas circunferências SECANTES.
|r1 - r2| < alt="" src="http://www.coladaweb.com/matematica/circun_arquivos/image062.jpg" width="71" border="0" height="55">

* Caso particular: Concêntricas:
As duas circunferências são interiores e os centros das duas são coincidentes.
d = 0


Conclusão
Nosso trabalho consiste em falar sobre circunferência. Nesta ação, conseguimos compreender o que é circunferência; é o lugar geométrico de todos os pontos de um plano que estão localizados a uma mesma distância r de um ponto fixo denominado o centro da circunferência.
Autoria: Daiane Fernandes

sexta-feira, 10 de setembro de 2021

Comprimento da circunferência

O perímetro de uma figura é calculado através da soma dos comprimentos de todos os lados. Portanto, não temos uma expressão definida para o cálculo do perímetro de figuras. Mas na circunferência, a maneira de calcular o perímetro é diferente, pois as regiões circulares não são formadas por segmentos de retas. O comprimento da circunferência é dado em função do raio, isto de forma proporcional, quanto maior o raio maior o comprimento da circunferência.

Para determinarmos o comprimento da circunferência ou seu perímetro, utilizamos uma expressão única, sempre dependendo do tamanho do raio, observe:

C = 2 * π * r, onde:

C = raio da circunferência (medida do centro à extremidade)
π = 3,14 (aproximadamente)
r = raio


Exemplo 1

Determine quantos metros, aproximadamente, uma pessoa percorrerá se der 8 voltas completas em torno de um canteiro circular de 2 m de raio.

Resolução:
Calcular quantos metros essa pessoa percorre em uma volta e depois multiplicar por 8.

C = 2 * π * r
C = 2 * 3,14 * 2
C = 12,56

Comprimento do percurso
C = 12,56 * 8
C = 100,48 metros

Exemplo 2

O pneu de um veículo, com 400 mm de raio, ao dar uma volta completa, percorre quantos metros aproximadamente?

Resolução:

Precisamos transformar 400 mm em metros, para isso basta dividirmos 400 por 1000, resultando em 0,4m. Agora basta aplicarmos a expressão do comprimento de uma circunferência.

C = 2 * π * r
C = 2 * 3,14 * 0,4
C = 2,512 metros

O pneu percorre aproximadamente 2,5 metros.

Exemplo 3

Um ciclista de uma prova de resistência deve percorrer 600 km sobre uma pista circular de raio 100 m. Qual o número aproximado de voltas que ele dará?

Resolução:

Calcular o comprimento da pista
C = 2 * π * r
C = 2 * 3,14 * 100
C = 628 metros

Convertendo 500 km em metros
Como 1 km possui 1000 metros, então 600 * 1000 = 600 000 metros

Calculando o número aproximado de voltas
Basta dividir o percurso pelo comprimento da pista:
600 000 : 628 = 955 (aproximadamente)

Portanto, o ciclista deverá dar aproximadamente 955 voltas.

domingo, 5 de setembro de 2021

Estudo da reta

. ESTUDO DA RETA

COEFICIENTE ANGULAR OU DECLIVIDADE DE UMA RETA

Coeficiente angular (m) de uma reta r não perpendicular ao eixo das abscissas é o número real m que expressa a tangente trigonométrica de sua inclinação , ou seja:

m = tg


EQUAÇÃO DA RETA

Equação geral da reta

Toda reta do plano possui uma equação da forma:

ax + by + c = 0

na qual a, b, c são constantes e a e b não simultaneamente nulos.

Exemplos:

a) – 5x + 3y - 1 = 0

b) 9x – 4y – 13 = 0

Equação reduzida da reta

É toda equação de reta onde a variável y fica isolada. Na equação da reta na forma reduzida podemos identificar o coeficiente angular do lado da variável x e o coeficiente linear (termo independente da equação).

Exemplos:

a) y = 8x – 10

Coeficiente angular = 8

Coeficiente linear = - 10

b) y = – 4x + 12

Coeficiente angular = – 4

Coeficiente linear = 12

CÁLCULO DO COEFICIENTE ANGULAR E DA EQUAÇÃO DA RETA

Para calcular o coeficiente angular (não possuindo o valor da inclinação ) e achar a equação da reta, utiliza-se uma única fórmula:

Importante: A partir da fórmula acima, podemos determinar o coeficiente angular e a equação da reta da seguinte forma:



Coeficiente angular Equação da reta

2 valores para o y. O valor do m.

2 valores para o n. 1 valor para o n.

1 valor para o x.

Aplicação

Determine a equação da reta que passa pelos A (4, 12) e B (0, 4)

Solução:

1.º passo (cálculo do m – 2 valores para o y e 2 para o x):



2.º passo (equação da reta – o valor do m, 1 valor de y e um valor de x):,

extraido de www.colegioweb.com.br

sábado, 4 de setembro de 2021

Dodecaedro Regular


Dodecaedro: sólido platônico
O mais harmonioso e soberano dos sólidos Platônicos é o dodecaedro que, segundo Platão, representa o universo ou o cosmos. É constituído por doze pentágonos e não se divide em outros poliedros regulares. Possui 30 arestas, 20 vértices e 12 faces pentagonais.

Para calcularmos a área total de um dodecaedro precisamos levar em conta a área do pentágono, que é dada pela seguinte expressão A = (a*P)/2, onde a: medida do apótema do pentágono (depende do tamanho do lado) e P: perímetro do pentágono (depende do tamanho do lado). Calculada a área do pentágono, basta multiplicar por doze - que é o número de faces pentagonais do dodecaedro.
tg 36º = 3/a
0,727 = 3/a
a = 3/0,727
a = 4,1

Perímetro do pentágono:
6 x 5 = 30

Aplicando a fórmula para área do pentágono A = (a*P)/2, temos:
A = (4,1*30)/2
A = 61,5 cm²

Área do dodecaedro que possui arestas medindo 6 cm:
61,5 x 12 = 738 cm²

A área do dodecaedro também pode ser dada pela expressão:



O volume é dado pela expressão:



Planificação do dodecaedro


www.mundoeducacao.com.br

sexta-feira, 3 de setembro de 2021

Fatorial

Professor de Matemática no Colégio Estadual Dinah Gonçalves
E Biologia na rede privada de Salvador-Bahia
Professor Antonio Carlos carneiro Barroso
email accbarroso@hotmail.com
Extraído de http://www.alunosonline.com.br

Fatorial

Marcos Noé


Fatorial de um número
O fatorial de um número consiste em um importante mecanismo nos estudos envolvendo Análise Combinatória, pois a multiplicação de números naturais consecutivos é muito utilizada nos processos de contagem. Fatorial de um número consiste em multiplicar o número por todos os seus antecessores até o número 1.

Observe a definição a seguir:
Representamos o fatorial de um número por n! e o desenvolvimento por n! = n * (n – 1) * (n – 2) * (n – 3) * ... * 4 * 3 * 2 * 1 para n ≥ 2. Caso n = 1, temos 1! = 1 e n = 0, temos 0! = 1.

Exemplo 1

3! = 3 * 2 * 1 = 6
4! = 4 * 3 * 2 * 1 = 24
5! = 5 * 4 * 3 * 2 * 1 = 120
6! = 6 * 5 * 4 * 3 * 2 * 1 = 720
7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040
8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40 320
9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 362 880
10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3 628 800


Alguns cálculos envolvendo fatorial exigem algumas técnicas de simplificação e fatoração. Observe as demonstrações a seguir:

Exemplo 2

Vamos calcular o valor de 12! / 8! . Nesse caso, se desenvolvermos os fatoriais dos números e depois efetuarmos a divisão, o método de resolução estará correto. Mas essa forma de resolução pode se tornar complexa para números elevados, por isso devemos desenvolver o fatorial do maior número até chegarmos ao fatorial do menor número, simplificando os fatoriais semelhantes. Observe:


Exemplo 3

Outra forma de resolução de fatoriais é quando ocorre a soma de fatoriais. Nesse caso podemos utilizar a fatoração por evidência. Observe:

Exemplo 4

Outras situações exigem técnicas de desenvolvimento dos fatoriais para que simplificações sejam efetuadas. Veja:


n² + 2n + 3n + 6
n² + 5n +6


Exemplo 5

O fatorial de um número também está associado a equações. Observe os cálculos:

Solução = {4}


Exemplo 6

n2 – n = 42
n2 – n – 42 = 0

Desenvolvendo a equação do 2º grau temos:

n’ = 7 e n” = – 6

n = – 6 não convém, pois fatorial só é aplicado a números naturais. Portanto, S = {7}.