sexta-feira, 24 de julho de 2020

Expressão Numérica

Professor de Matemática Antonio Carlos Carneiro Barroso
Colégio Estadual Dinah Gonçalves
email accbarroso@hotmail.com
extraído do www.mundoeducacao.com.br

valor numérico de uma expressão numérica é preciso obedecer às regras de resolução de uma expressão numérica e quando encontramos em sua estrutura uma potência é preciso dar preferência a ela.

Veja alguns exemplos de expressões numéricas com potência em sua estrutura.

Exemplo:

• 3 . {43 – [5 . 60 + 7 . (92 – 80)]}

Nessa expressão numérica iremos resolver as potências 43, 60 e 92 antes de qualquer outra operação.

3 . {64 – [5 . 1 + 7 . (81 – 80)]}

Depois de eliminar todas as potências, é preciso aplicar as regas de resolução.

3 . {64 – [5 + 7 . 1 ]}
3 . {64 – [5 + 7]}
3 . {64 – 12}
3 . 52
156


• (33 + 3 . 7)2 : {4 . [800 – (32 . 2 + 10)2]}

Nessa expressão numérica iremos resolver as potências 33 e 32 antes de qualquer outra operação.

(27 + 3 . 7)2 : {4 . [800 – (9 . 2 + 10)2]}

Para resolvermos as potências (9 + 3 . 7)2 e (9 . 2 + 10)2 é preciso resolver as operações que estão dentro dos parênteses.

(27 + 21)2 : {4 . [800 – (18 + 10)2]}
2304 : {4 . [800 -784]}
2304 : {4 . 16}
2304 : 64
36

NOÇÕES DE LÓGICA MATEMÁTICA

CÁLCULO PROPOSICIONAL
Como primeira e indispensável parte da Lógica Matemática temos o CÁLCULO PROPOSICIONAL ou CÁLCULO SENTENCIAL ou ainda CÁLCULO DAS SENTENÇAS.

CONCEITO DE PROPOSIÇÃO
PROPOSIÇÃOsentenças declarativas afirmativas (expressão de uma linguagem) da qual tenha sentido afirmar que seja verdadeira ou que seja falsa.
· A lua é quadrada.
· A neve é branca.
· Matemática é uma ciência.
Não serão objeto de estudo as sentenças interrogativas ou exclamativas.

OS SÍMBOLOS DA LINGUAGEM DO CÁLCULO PROPOSICIONAL
· VARIÁVEIS PROPOSICIONAIS: letras latinas minúsculas p,q,r,s,.... para indicar as proposições (fórmulas atômicas) .
Exemplos:    A lua é quadrada : p
                     A neve é branca : q
· CONECTIVOS LÓGICOS: As fórmulas atômicas podem ser combinadas entre si e, para representar tais combinações usaremos os conectivos lógicos :








Ùe , Úou , ® : se...então , « : se e somente se , ~nãoExemplos:








· A lua é quadrada e a neve é branca. : Ù q (p e q são chamados conjunctos)· A lua é quadrada ou a neve é branca. : Ú q ( p e q são chamados disjunctos)
· Se a lua é quadrada então a neve é branca. : ® q ( p é o antecedente e q o conseqüente)
· A lua é quadrada se e somente se a neve é branca. : « q
· A lua não é quadrada. : ~p

 
· SÍMBOLOS AUXILIARES : ( ) , parênteses que servem para denotar o "alcance" dos conectivos;
Exemplos:








· Se a lua é quadrada e a neve é branca então a lua não é quadrada. :
   ((p Ù q) ® ~ p)· A lua não é quadrada se e somente se a neve é branca. :
   ((~ p) «q))
· DEFINIÇÃO DE FÓRMULA :








1. Toda fórmula atômicaé uma fórmula.
2. Se A e B são fórmulas então
    (A Ú B) , (A Ù B) , (A ® B) , (A « B) (~ A) também são fórmulas.
3. São fórmulas apenas as obtidas por 1. e 2. .
Os parênteses serão usados segundo a seguinte ordem dos conectivos: ~Ú , Ù , ®« .
Com o mesmo conectivo adotaremos a convenção pela direita.
Exemplo: a fórmula Ú q Ù ~ r ® p ® ~ q deve ser entendida como
                  (((p Ú q) Ù (~ r)) ® ( p ® (~ q)))

AS TABELAS VERDADE
A lógica clássica é governada por três princípios (entre outros) que podem ser formulados como segue:
· Princípio da Identidade: Todo objeto é idêntico a si mesmo.
· Princípio da Contradição: Dadas duas proposições contraditórias (uma é negação da outra), uma delas é falsa.
· Princípio do Terceiro Excluído: Dadas duas proposições contraditórias, uma delas é verdadeira.
Com base nesses princípios as proposições simples são ou verdadeiras ou falsas - sendo mutuamente exclusivos os dois casos; daí dizer que a lógica clássica é bivalente.
Para determinar o valor (verdade ou falsidade) das proposições compostas (moleculares), conhecidos os valores das proposições simples (atômicas) que as compõem usaremos tabelas-verdade :
1.Tabela verdade da "negação" ~p é verdadeira (falsa) se e somente se p é falsa (verdadeira).
p~p
VF
FV
2. Tabela verdade da "conjunção" : a conjunção é verdadeira se e somente os conjunctos são verdadeiros.
p
q
Ù q
V
V
V
V
F
F
F
V
F
F
F
F
3. Tabela verdade da "disjunção" : a disjunção é falsa se, e somente, os disjunctos são falsos.
p
q
Ú q
V
V
V
V
F
V
F
V
V
F
F
F
4. Tabela verdade da "implicação": a implicação é falsa se, e somente se, o antecedente é verdadeiro e o conseqüente é falso.
p
q
® q
V
V
V
V
F
F
F
V
V
F
F
V
5. Tabela verdade da "bi-implicação": a bi-implicação é verdadeira se, e somente se seus componentes são ou ambos verdadeiros ou ambos falsos
p
q
« q
V
V
V
V
F
F
F
V
F
F
F
V
Exemplo: Construir a tabela verdade da fórmula : ((p Ú q) ® ~p) ® (q Ù p)
p
q
      ((p Ú q) ® ~p) ® (q Ù p) 
V
V
V
F
F
V
V
V
F
V
F
F
V
F
F
V
V
V
V
F
F
F
F
F
V
V
F
F

·NÚMERO DE LINHAS DE UMA TABELA-VERDADE: Cada proposição simples (atômica) tem dois valores V ou F, que se excluem. Para n atômicas distintas, há tantas possibilidades quantos são os arranjos com repetição de 2 (V e F) elementos n a n. Segue-se que o número de linhas da tabela verdade é 2n. Assim, para duas proposições são 22 = 4 linhas; para 3 proposições são 23 = 8; etc.
Exemplo: a tabela - verdade da fórmula ((p Ù q) ® r) terá 8 linhas como segue :
p
q
r
((p Ù q) ® r )
V
V
V
V      V
V
V
F
V      F
V
F
V
F     V
V
F
F
F     V
F
V
V
F     V
F
V
F
F     V
F
F
V
F     V
F
F
F
F     V

NOTA: "OU EXCLUSIVO" É importante observar que "ou" pode ter dois sentidos na linguagem habitual: inclusivo(disjunção) Ú ("vel")  e exclusivo Ú  ( "aut") onde Úq significa ((p Ú q) Ù~ (p Ù q)).
p
q
((p Ú q) Ù ~ (p Ù q))
V
V
       V       F  F     V
V
F
        V      V  V     F
F
V
        V      V  V     F
F
F
        F       V     F 

CELINA ABAR 

Adição e subtração de fração

As adições e subtrações de frações devem respeitar duas condições de operações:

1ª condição: denominadores iguais.

Quando os denominadores são iguais, os numeradores devem ser somados ou subtraídos de acordo com os sinais operatórios e o valor do denominador mantido. Observe os exemplos:

2º condição: denominadores diferentes.

Nas operações da adição ou subtração envolvendo números na forma de fração com denominadores diferentes, devemos criar um novo denominador através do cálculo do mínimo múltiplo comum – MMC dos denominadores fornecidos. O novo denominador deverá ser dividido pelos denominadores atuais, multiplicando o quociente pelo numerador correspondente, constituindo novas frações proporcionalmente iguais as anteriores e com denominadores iguais. Observe os cálculos:





Realizar o MMC entre 3 e 4.








Realizar o MMC entre 5, 9 e 12.








Realizar o MMC entre 15 e 20.




www.mundoeducacao.com.br

Salmos 121

Levantarei os meus olhos para os montes, de onde vem o meu socorro.
O meu socorro vem do Senhor que fez o céu e a terra.
Não deixará vacilar o teu pé; aquele que te guarda não tosquenejará.
Eis que não tosquenejará nem dormirá o guarda de Israel.
O Senhor é quem te guarda; o Senhor é a tua sombra à tua direita.
O sol não te molestará de dia nem a lua de noite.
O Senhor te guardará de todo o mal; guardará a tua alma.
O Senhor guardará a tua entrada e a tua saída, desde agora e para sempre.

Salmos 121:1-8

Nematelmintos

Os nemaltelmintos eram tratados antigamente como uma classe dentro de filo maior, denominado Aschelminthes. Atualmente não se consideram mais os asquelmintos como um filo verdadeiro, mas apenas um termo genérico sem valor científico. Os nematelmintos possuem corpo cilíndrico, recoberto por uma cutícula resistente, com simetria bilateral. Numerosas espécies apresentam vida livre, porém muitas são parasitas de plantas e animais.
Os nematóideos possuem dois nervos (dorsal e ventral) longitudinais que correm o corpo do animal. Não há sistema circulatório ou respiratório. Possuem sistema digestivo completo e digestão extracelular. A respiração é anaeróbica. Todos apresentam sexos separados.
Algumas espécies parasitam o ser humano: Ascaris lumbricoides, Necator americanus, Enterobius vermiculares, Ancylostoma duodenale , por exemplo.
Ascaris lumbricoides
Ascaris lumbricoides ou lombriga, como é conhecida popularmente, é um verme de 15 a 20 centímetros de comprimento, parasita do intestino humano. Apresenta dimorfismo sexual (macho diferente das fêmeas), sendo que o macho é menor e possui a extremidade posterior do corpo em forma de gancho como podemos ver na figura abaixo:

A lombriga quando adulta vive no intestino humano, onde deposita seus ovos, que são eliminados com as fezes do hospedeiro. Mais tarde esses ovos vão se desenvolver contaminando o solo e as águas dos rios. Esses causam diferentes doenças que atacam diversas partes do corpo humano, podendo levar até mesmo à morte.
Transmissão
Esse verme pode ser pego de várias maneiras como por exemplo, em instalações sanitárias inadequadas. As fezes são liberadas podendo contaminar a água, o solo e conseqüentemente a vegetação. Assim, ao se comer o vegetal contaminado, os ovos podem chegar ao tubo digestivo. Em cada ovo desenvolve-se uma larva que perfura a parede do intestino, atingindo os vasos sangüíneos.
Sintomas
As larvas da lombriga podem trazer graves problemas respiratórios, coceira no nariz e na garganta (3). Já o verme quando adulto causa outras doenças como vômitos, cólicas e convulsões (4). Mas, quando o número de vermes é grande, leva à obstrução intestinal, podendo causar a morte. Nas crianças, às vezes, também aparecem outros sintomas como a asfixia, pois se acumulam na laringe e na faringe, durante o excesso de vômitos.
Profilaxia
Esses vermes são transmissíveis através das fezes depositadas no solo e nas águas dos rios, contaminando assim o alimento plantado naquele local. Logo, a pessoa que ingere esse alimento fica contaminada. Para evitar essa contaminação é preciso ter, principalmente, Saneamento Básico, condições sanitárias adequadas, pois assim as fezes não irão contaminar o meio ambiente. Ao se alimentar, deve-se lavar muito bem os alimentos que serão ingeridos crus. As verduras cruas devem ser bem desinfetadas ou, se possível, cozidas.
Ancylostoma duodenale
Ancilóstomo. Seu nome científico é Ancylostoma duodenale. Esse verme possui aproximadamente 15 milímetros de comprimento. Alimenta-se do sangue da parede do intestino humano, ali permanecendo fixo.

Acima a figura mostra os ganchos da cavidade bucal com os quais o verme se prende à parede do intestino e ao lado o ovo com o embrião.
Sintomas
Ao contrair Amarelão ou Ancilostomose, a pessoa contaminada se enfraquece e pode ter anemia, pois ocorre hemorragia nas feridas da parede intestinal.
Transmissão
As fêmeas do ancilóstomo depositam seus ovos no intestino humano. Ao saírem com as fezes, podem cair em solos úmidos. Esses ovos dão origem a larvas microscópicas, que se fixam na terra. As larvas, ao entrarem em contato com a pele humana, penetram no organismo. Pela circulação, vão para o intestino humano, onde atingem a fase adulta e podem se reproduzir, dando origem a doenças como ancilostomose ou amarelão, como podemos ver abaixo:
Ciclo do Amarelão
Esses vermes são encontrados especialmente nas areias úmidas e em poças d'água.

Profilaxia
Precisamos ter alguns cuidados básicos como:
  • Não devemos jogar fezes no meio ambiente, pois assim podemos contaminá-lo.
  • Devemos ter Saneamento Básico, desviando as fezes para locais específicos, para não contaminar o ambiente.
  • Evitar o contato da pele humana com terra suja ou que possa estar contaminada. Usar calçados ajuda a prevenir a contaminação desses vermes.

quinta-feira, 23 de julho de 2020

Elipse

Definição: Dados dois pontos quaisquer do plano F1 e F2 e seja 2c a distância entre eles, elipse é o conjunto dos pontos do plano cuja soma das distâncias à F1 e F2 é a constante 2a (2a > 2c).

Elementos da Elipse:


F1 e F2 → são os focos
C → Centro da elipse
2c → distância focal
2a → medida do eixo maior
2b → medida do eixo menor
c/a → excentricidade

Há uma relação entre os valores a, b e c→ a2 = b2+c2

Equação da Elipse.

1º caso: Elipse com focos sobre o eixo x.

Nesse caso, os focos têm coordenadas F1( - c , 0) e F2(c , 0). Logo, a equação reduzida da elipse com centro na origem do sistema cartesiano e com focos sobre o eixo x será:


2º Caso: Elipse com focos sobre o eixo y.

Nesse caso, os focos apresentam coordenadas F1(0 , -c) e F2(0 , c). Assim, a equação reduzida da elipse com centro na origem do sistema cartesiano e com focos sobre o eixo y será:

Exemplo 1. Determine a equação reduzida da elipse com focos sobre o eixo x, com eixo maior medindo 12 e eixo menor 8.

Solução: temos que
2a = 12 → a =6
2b = 8 → b = 4
Assim,


Exemplo 2. Determine a equação reduzida da elipse sabendo que um dos focos é F1(0 , -3) e que o eixo menor mede 8.

Solução: temos que
Se F1(0 , -3) → c = 3 e o foco está sobre o eixo y.
2b = 8 → b = 4
Usando a relação notável: a2 = b2+c2, obtemos:
a2 = 42+32 → a2 = 16 + 9 → a2 = 25 → a = 5
Assim, a equação reduzida da elipse será:

  Marcelo Rigonatto

Transformações Lineares

1. Se T : V → W é uma transformação linear, mostre que:
(a) Ker(T) é um subespaço de V . (b) Im(T) é um subespaço de W.
Solução:
Agora, somando-se membro a membro estas duas equações vetoriais, vem
fazendo v = λu ∈ V . Isto é, existe v ∈ V tal que λw = T(v), basta tomarmos v = λu ∈ V e, portanto, λw ∈ Im(T). Daí, concluímos que Im(T) é um subespaço vetorial de W.
(a) Determine uma base do núcleo de T. (b) Dê a dimensão da imagem de T. (c) T é sobrejetora? Justifique. (d) Faça um esboço de Ker(T) e Im(T).
Solução:
(c) Não. A imagem não é igual ao contradomínio já que DimIm(T) = 2 e o contradomínio tem dimensão 3.
3. No plano, uma rotação anti-horária de 45◦ é seguida por uma dilatação de √ 2. Ache a aplicação
A que representa esta trasnformação do plano.
Solução:
sinθ cosθ
Que pode ser escrito como uma transformação:
Uma dilatação D de √
2(x,y). Como queremos dilatar a transformação R, teremos
Solução: Escreva
Aplicando T e sabendo que ela é linear, temos:
α1 = α2 == αm = 0.
Solução: (a) Podemos escrever essa transformação na forma:
(b) Para a imagem, teremos
6. Mostrar que a matriz do operador linear indentidade
I : Rn → Rn,I(v) = v em uma base qualquer, é a matriz identidade n × n.
Solução:
T(v1) = 1 · v1 + 0 · v2 +0 · vn
T(v2) = 0 · v1 + 1 · v2 ++ 0 · vn
T(vn) = 0 · v1 + 0 · v2 ++ 1 · vn
Daí, a matriz de transformação será
Solução: Escreva a combinação
a1 · Tu1 + a2 · Tu2 ++ ak · Tuk = 0(= T(0))
T(a1 · u1 + a2 · u2 ++ ak · uk) = T(0).
Como T é linear,
a1 · u1 + a2 · u2 ++ ak · uk = 0.
Como u1,u2,...,uk são vetores LI, teremos a1 = a2 == ak = 0, e portanto {T(u1),...,T(uk)}
Sendo T injetiva, é L.I.
(d) Ache a transformação linear P : R2 → R2 tal que P = S ◦ T
Solução:
ou seja,
(c)
ou seja,
(d)
Solução:
10. Seja T : V → W uma transformação. Mostre que se T é linear, então T(0) = 0.
fonte http://www.ebah.com.br