Pesquisar no blog

Carregando...

Pesquisar na net

Custom Search

cead20136

sábado, 12 de abril de 2014

Condição de alinhamento de três pontos

Condição de alinhamento de três pontos

Marcelo Rigonatto




Pontos alinhados
Considere três pontos distintos do plano cartesiano A(xa, ya), B(xb, yb) e C(xc, yc). Esses pontos estão alinhados se o determinante de suas coordenadas for igual a zero. Ou seja:

Exemplo 1. Verifique se os pontos A(5, 5), B(1, 3) e C(0, 5) estão alinhados.
Solução: devemos fazer o cálculo do determinante das coordenadas dos pontos A, B e C e verificar se o resultado é igual a zero.


Como o determinante das coordenadas dos pontos resultou em um valor diferente de zero, podemos concluir que os pontos A, B e C não estão alinhados.

Exemplo 2. Determine o valor de c para que os pontos A(4, 2), B(2, 3) e C(0, c) estejam alinhados.
Solução: para que os pontos A, B e C estejam alinhados, o determinante de suas coordenadas deve ser igual a zero. Assim, temos que:

Fazendo o cálculo do determinante obtemos:
12 + 0 + 2c – 4 – 4c – 0 = 0
ou
8 – 2c = 0
2c = 8
c = 4.

Exemplo 3. Para quais valores reais de k os pontos (6, k), (3, 4) e (2 – k, 2) são colineares?
Solução: dizer que os pontos são colineares é o mesmo que dizer que eles estão alinhados. Dessa forma, devemos fazer o cálculo do determinante e igualá-lo a zero.


Desenvolvendo o determinante, obtemos:
– k2 + 3k + 10 = 0
ou
k2 – 3k – 10 = 0
Resolvendo a equação acima, obtemos:
k = 5 ou k = – 2

2 comentários:

co

assine o feed

Postagens

acompanhe

Comentários

comente também

Widget Códigos Blog modificado por Dicas Blogger