cead20136

Pesquisar no blog

Carregando...

Pesquisar na net

Custom Search

sábado, 2 de agosto de 2014

Equação da hipérbole

No estudo da geometria analítica, as diversas figuras geométricas são estudadas do ponto de vista algébrico. Ponto, retas, circunferências são esquematizadas com o auxílio da álgebra. As cônicas, que são figuras geométricas oriundas de secções transversais realizadas em um cone, também são muito exploradas. A própria circunferência, a elipse, a parábola e a hipérbole são classificadas de cônicas. Vejamos como a hipérbole pode ser explorada do ponto de vista da geometria analítica.

Definição de hipérbole: Considere F1 e F2 como sendo dois pontos distintos do plano e 2c a distância entre eles. Hipérbole é o conjunto dos pontos do plano, tais que a diferença, em valor absoluto, das distâncias à F1 e F2 é a constante 2a (0 < 2a < 2c).
A hipérbole pode ter os focos sobre o eixo x ou sobre o eixo y e sua equação varia em cada um dos casos. Vamos deduzir sua equação para cada um dos casos citados.

Hipérbole com focos sobre o eixo x.
Como os focos da hipérbole estão localizados sobre o eixo x, suas coordenadas serão: F2(c, 0) e F1(– c, 0). Nesse caso, a equação da hipérbole será do tipo:
Hipérbole com focos sobre o eixo y.
Como os focos da hipérbole estão sobre o eixo y, suas coordenadas serão: F2(0, c) e F1(0, – c). Nesse caso, a equação da hipérbole será do tipo:
Elementos e propriedades da hipérbole:
2c → é a distância focal.
c2 = a2 + b2 → relação fundamental.
A1(– a, 0) e A2(a, 0) → são os vértices da hipérbole.
2a → é a medida do eixo real.
2b → é a medida do eixo imaginário.
c/a → é a excentricidade
Exemplo 1. Determine a equação da hipérbole com focos F1(– 10, 0) e F2(10, 0) e eixo real medindo 16 unidades.
Solução: De acordo com as coordenadas dos focos percebemos que eles estão sobre o eixo x, pois as coordenadas y são iguais a zero. Também podemos afirmar que c = 10.

Foi dado que o eixo real tem 16 unidades de comprimento. Logo, temos que:
2a = 16 → a = 8

Para determinar a equação da hipérbole precisamos conhecer os valores de a e b, portanto devemos utilizar a relação fundamental para encontrarmos o valor de b. Segue que:
c2 = a2 + b2
102 = 82 + b2
b2 = 100 – 64
b2 = 36
b = 6

Conhecidos os valores de a e b podemos escrever a equação da hipérbole com focos sobre o eixo x:


Exemplo 2. Determine as coordenadas dos focos da hipérbole de equação:

Solução: Observando a equação da hipérbole podemos constatar que seus focos estão sobre o eixo y, logo terão coordenadas do tipo F1(0, – c) e F2(0, c).
Da equação da hipérbole obtemos que:
a2 = 16 → a = 4
b2 = 9 → b = 3
Utilizando a relação fundamental, teremos:
c2 = a2 + b2
c2 = 16 + 9
c2 = 25
c = 5
Portanto, os focos da hipérbole são F1(0 , – 5) e F2(0, 5).
Marcelo Rigonatto
Especialista em Estatística e Modelagem Matemática

Um comentário:

  1. Caro amigo seu blog é muito claro e fácil de compreender confesso que agora sim estou entendendo bem hipérbole. Mas, gostaria de saber se poderia me ajudar nessa questão:
    1) Mostre que se y=mx+n é tangente a hiperbole de equação x^2/a^2 - y^2/b^2 =1, então a^2m^2 = n^2 +b^2

    ResponderExcluir

co

assine o feed

Postagens

acompanhe

Comentários

comente também

Widget Códigos Blog modificado por Dicas Blogger