Potência
O expoente possui um papel fundamental na potenciação, pois ele é quem define quantas vezes a base será multiplicada por ela mesma. Observe:
26 = 2 x 2 x 2 x 2 x 2 x 2 = 64
42 = 4 x 4 = 16
53 = 5 x 5 x 5 = 125
102 = 10 x 10 = 100
122 = 12 x 12 = 144
35 = 3 x 3 x 3 x 3 x 3 = 243
63 = 6 x 6 x 6 = 216
Casos de potenciação
Todo número diferente de zero e elevado a zero é um.
20 = 1
30 = 1
100 = 1
40 = 1
1250 = 1
Todo número diferente de zero e elevado a um é o próprio número.
21 = 2
31 = 3
151 = 15
201 = 20
121 = 12
Base zero e qualquer número no expoente, o resultado será zero.
05 = 0
012 = 0
0100 = 0
07 = 0
025 = 0
Base negativa e expoente ímpar, resultado negativo.
(-3)3 = (-3) x (-3) x (-3) = -27
(-4)5 = (-4) x (-4) x (-4) x (-4) x (-4) = -1024
(-2)7 = (-2) x (-2) x (-2) x (-2) x (-2) x (-2) x (-2) = -128
Base negativa e expoente par, resultado positivo.
(-2)4 = (-2) x (-2) x (-2) x (-2) = + 16
(-6)2 = (-6) x (-6) = + 36
(-7)2 = (-7) x (-7) = + 49
Base é um número racional (fração): devemos elevar ao expoente indicado o numerador e o denominador da fração.
Quando o expoente é um número negativo: invertemos a base e mudamos o sinal do expoente para positivo.
Uma importante aplicação de potenciação é a notação científica, usada para expressar valores muito grandes ou muito pequenos. A notação é usada por cientistas, como astrônomos, físicos, biólogos, químicos entre outros.
Exemplos:
6 120 000, podemos representá-lo usando a seguinte notação decimal 6,12 * 106
0,00012, pode ser representado por 1,2 * 10-4.
Marcos Noé
Nenhum comentário:
Postar um comentário