terça-feira, 21 de abril de 2020

ÂNGULOS



www.youtube.com/accbarroso1
Ângulo é a reunião de duas semi-retas de mesma origem e não-colineares.

Na figura





Indicação do ângulo: AÔB, ou BÔA ou simplismente Ô




PONTOS INTERNOS E PONTOS EXTERNOS A UM ÂNGULO


Seja o ângulo AÔB





MEDIDA DE UM ÂNGULO


Um ângulo pode ser medido através de um instrumento chamado transferidor e que tem o grau como unidade. O ângulo AÔB da figura mede 40 graus.






Indicação:
m (AÔB) = 40º

A unidade grau tem dois submúltiplos: minuto e segundo

1 grau tem 60 minutos (indicação: 1 = 60º)
1 minuto tem 60 segundos ( indicação 1´ = 60"

Simbolicamente:

== Um ângulo de 25 graus e 40 minutos é indicado por 25º 40´.
== Um ângulo de 12 graus, 20 minutos e 45 segundos é indicado por 12º 20´45"


EXERCICIOS


1) Dê a indicação, o vértice e os lados dos ângulos:





2) Em cada uma das figuras abaixo há três ângulos. Quais são esses ângulos?










3) 0bserve os pontos assinalados e responda:






a) Quais pontos estão no interior do ângulo?
b) Quais ponmtos estão no ixterior do ângulo?
c) Quais pontos pertencem aos lados do ângulo?


4) Escreva as medidas em graus dos ângulos indicados pelo transferidor.






a) m (AÔB)
b) m (AÔC)
c) m (AÔD)
d) m (AÔE)
e) m (AÔF)
f) m (AÔG)

5) Escreva simbolicamente:

a) 30 graus
b) 10 graus e 25 minutos
c) 42 graus e 54 minutos
d) 15 graus, 20 minutos e 40 segundos
e) 54 graus, 38 m inutos e 12 segundos

6) Responda:

a) Um grau é igual a quantos minutos?
b) Um minuto é igual a quantos segundos?
c) Um grau é igual a quantos segundos?

7) Tranforme :

a) 1º em minutos
b) 2º em minutos
c) 3º em minutos
d) 4º em minutos
e) 5º em minutos
f) 1´ em segundos
g) 2´ em segundos
h) 3´ em segundos
i) 4´ em segundos
j) 5´ em segundos


8) Transforme em minutos, observando o exemplo resolvido:

resolvido = 2º 17´ = 2 x 60´ + 17´ = 137´

a) 5º 7´ =
b) 3º 20´ =
c) 10º 35´ =
d) 12º 18´ =
e) 3º 45´ =
f) 5º 54´ =
g) 7º 12´ =
h) 9º 36´ =

9) Transforme:

120´= 120 : 60 = 2º ===== resolvidos  ==== 120" = 120" : 60 = 2´

a) 180´em graus =
b) 240´em graus =
c) 300´ em graus =
d) 360´em graus  =
e) 180" em minutos =
f) 240" em minutos =
g) 300" em minutos =
h) 360" em minutos =

10) Transforme em graus e minutos:

Resolvido: 75´= 1º 15´  (obs divida os minutos por 60 para obter os graus. O resto , se existir, serão os minutos.)

a) 90´ =
b) 95´=
c) 130´ =
d) 150´ =
e) 385´ =
f) 512´=
g) 867´=
h) 1000´=

11) Transforme em minutos e seguntos:

a) 97" =
b) 130" =
c) 150" =
d) 162" = 
e) 185" =
f) 254" = 

12) Copie e complete:

a) 40° = 39°_______
b) 70° = 69 _______
c) 84° = 83° ______
d) 90° = 89° _______
e) 150° = 149° ________
f) 180° = 179° _______

13) Escreva as medidas na forma mais simples:

Resolvildo: 27° 60´ = 28°

a) 29º 60´= (R: 30°)
b) 34° 60´= (R: 35°)
c) 72° 60´= (R: 73°)
d) 99° 60´= (R: 100°)
e) 54° 60´ = (R: 55°)
f)  108° 60´= (R: 109°)

14) Escreva as medidas na forma mais simples:

Resolvido: 39° 75´ = 40° 15´

a) 30° 80´ = (R: 31° 20´)
b) 45° 90´= (R : 46° 30´)
c) 57° 100´= (R: 58° 40´)
d) 73° 110´= (R: 74° 50´)
e) 20° 120´= (R: 22°)
f) 25° 150´= (R: 27° 30´)
g) 42° 160´= (R: 44° 40´)
h) 78° 170´= (R: 80° 50´)


OPERAÇÕES COM MEDIDAS DE ÂNGULOS



 ADIÇÃO

1) Exemplo

17° 15´ 10"  + 30° 20´40"

17° 15´ 10"
30° 20´ 40"
-----------
47° 35´ 50"

2) Exemplo

13° 40´ +  30° 45´

13° 40´
30° 45´
--------
43° 85´ (simplificando) 44° 25´


EXERCÍCIOS

1) Calcule as somas:

a) 49° + 65° = (R:
b) 12° 25´ + 40° 13´ = (R:
c) 28° 12´ + 5 2° 40´ = (R:
d) 58°  + 17° 19´ = (R:
e) 41° 58´ +  16°  =  (R:
f) 25° 40´ + 16° 50´ =  (R:
g) 23° 35´ + 12° 45´ = (R:
h) 21° 15´40" + 7° 12´5" = (R:
i) 35° 10´50"  +  10° 25´20"  = (R:
j) 31° 45´50" + 13° 20´40"  = (R:
l) 3° 24´9" + 37° 11´33" = (R:
m) 35° 35´2" + 22° 24´58" = (R:



SUBTRAÇÃO

1) Exemplo

58° 40´ -  17° 10´ =

58° 40´
17° 10´
-------
41° 30´


2) Exemplo

80° - 42° 30´ =

80°
42° 30´
-------
37° 30´

EXERCÍCIOS

1) Calcule as diferenças:

a) 42° - 17° = (R:
b) 172° - 93° = (R:
c) 48° 50´ - 27° 10´ = ( R:
d) 42° 35´  -  13° 15´ = (R:
e) 70° - 22° 30´ = (R:
f) 30° - 18° 10´= (R:
g) 90° - 54° 20´ (R:
h) 120° - 50°45´ =(R:
i) 52°30´ - 20°50´ = (R:
j) 39° 1´ - 10°15´ =  (R:




MULTIPLICAÇÃO DE ÂNGULOS


1º) Exemplo

17°15´ x 2 =

17°15´
___x2
--------
34°30´

2°) Exemplo

24° 20´ x  3 =

24°20´
____3
-------
72°60´ (simplificando) 73°


EXERCÍCIOS

1) Calcule os produtos:

a) 25°10´ x 3 = (R:
b) 44°20´ x 2 = ( R:
c) 35° 10´ x 4 = (R:
d) 16°20´ x 3 = (R:
e) 28°30´ x 2 = (R:
f) 12°40´ x 3  = (R:
g) 15°30´ x 3 = (R:
h) 14° 20´ x 5 =(R:




DIVISÃO DE UM ÂNGULO POR UM NÚMERO


1º Exemplo







2º Exemplo










EXERCÍCIOS

1) Calcule os quocientes:

a) 48° 20´ : 4 = (R:
b) 45° 30´ : 3 = (R:
c) 75° 50´ : 5  = (R:
d) 55° : 2 = (R:
e) 90° : 4 = (R:
f) 22° 40´ : 5 = (R:


2) Calcule:

a) 2/5 de 45° = (R;
b) 5/7 de 84° = (R:
c) 3/4 de 48° 20´ (R:
d) 3/2 de 15° 20´ (R:



ÂNGULOS CONGRUENTES


Dois ângulos são congruentes se as suas medidas são iguais.




Indicação AÔB = CÔD ( significa: AÔB é congruente a CÔD )





BISSETRIZ DE UM ÂNGULO


Bissetriz de um ângulo é a simi-reta com origem no vértice do ângulo e que o divide em dois ângulos congruentes.




EXERCÍCIOS










Responda:

a) Quanto mede o ângulo MÔA?
R:
b) Quanto mede o ângulo NÔC?
R:
c) Quanto mede o ângulo BÔN?
R:
d) Quanto mede o ângulo MÔC?
R:
e) Quanto mede o ângulo AÔN?
R:
f) Quanto m,ede o ângulo MÔN?
R:














ÂNGULOS RETO, AGUDO E OBTUSO

Os ângulos recebem nomes especiais de acordo com suas medidas:

= Ângulo reto é aquele cuja medida é 90°.
= ângulo agudo é aquele cuja medida é menor de 90°
= ângulo obtuso é aquele cuja medida é maior que 90°



RETAS PERPENDICULARES

Quanto duas retas se interceptam formando ângulos retos, dizemos que elas são perpendiculares.









EXERCÍCIOS

1) Classifique os ângulos apresentados nas figuras em agudos, obtusos ou reto:





2) Identifique na figura:





3) Responda:

a) O menor ângulo formado pelos pnteiros de um relógio às 3 horas é um ângulo agudo, reto ou obtuso?
b) O menor ângulo formado pelos ponteiros de um relógio às 2 horas é um ângulo agudo,reto ou obtuso?
c) O menor ângulo formado pelos ponteiros de um relógio às 5 horas é um  ângulo é um ângulo agudo, reto ou obtuso?

4) Observe a figura e responda:




Qual o número de elementos do conjunto { a,b,c,x,y,z}?



ÂNGULOS COMPLEMENTARES






Dois angulos são complementares quando am soma de suas medidas é 90°

m(AÔB) + m((BÔC) = m(AÔC)

Exemplos:

= 65° e 25° são ângulos complementares , porque 65° + 25° = 90°
= 40° e 50° são ângulos complementares, porque 40° + 50° = 90°


EXERCÍCIOS 

1) Responda: 

a) Um ângulo de 20° e um de 70° são complementares?
b) Um ângulo de 35° e um de 65° são complementares?
c) Um ângulo de 73° e um de 27° são complementares?
d) Um ângulo de 58° e um de 32° são complementares?


2) Calcule o complemento dos seguintes ângulos:

a) 34°
b) 72°
c) 84°
d) 18° 25´
e) 40° 30´
f) 51° 20´

3) Resolva as equações abaixo, onde a inc´gnita x é um ângulo (medido em graus)

a) 2x = 90°
b) x + 17° = 90°
c)  4x + 10° = 90°
d) x + 8x = 90°
e) 5x - 20° = 1° = 2x
f) x = 2( 90° - x)
g) 4( x + 3° 0 = 20°
h) ( 3x - 20° ) + 50° = 90°
I) 3( x + 1°) = 2( x  + 7°)
J) 2x + 2 (x + 1° ) = 4° + 3 ( x + 2°)

4) Determine x, sabendo que os ângulos são complementares:













5) Dado um ângulo de medida x, indicar:

a) o seu complemento.
b) o dobro do seu complemento
c) o triplo do seu complemento.
d) a metade do seu complemento
e) a terça parte do seu complemento





7) A medida de um ângulo é igual à medida de seu comprimento, quanto mede esse  ângulo?

8) A medida de um ângulo é a metade da medida do seu comprimento. Calcule a medida desse ângulo.

9) Calcule a medida de um ângulo cuja medida é igual ao triplo de seu complemento.

10) A diferença entreo o dobro da medida de um ângulo e o seu complemnto é 45° Calcule a medida desse ângulo.

11) A terça parte do complemento de um ângulo mede 20°. Qual a medida do ângulo?

12) Dois ângulos complementares têm suas medidas expressas em graus por 3x + 25° e 4x - 5° . Quanto medem esses ângulos?




ÂNGULOS SUPLEMENTARES


Dois ângulos são suplementares quando a soma de suas medidas é 180°

m(AÔB) + m(BÔC) = 180°



Exemplos:

= 50° e 130° são angulos suplementares, porque 50° + 130° = 180°
= 125° e 55° são ângulos suplementares, porque 125°  + 55º = 180°


EXERCÍCIOS

1) Responda:

a) Um ângulo de 70° e um de 110° são suplementares?
R: (

b) Um ângulo de 155° e um de 25° são suplementares?

2) Calcule o suplemento dos seguintes ângulos:
a) 30° = (R:
b) 85° = (R: 
c) 72° = (R: 
d) 132° 30´ = (R: 
e) 140° 20´ = (R: 
f) 151° 40` =(R:


3) Determine x, sabendo que os ángulos são suplementares:








4) Determine x, sabendo que os ângulos são suplementares:







5) Calcule x:


6) Aquarta parte da medida de um ângulo mede 30°. Calcule a medida do seu suplemento.
(R:
7) A medida de um ângulo é igual à medida de seu suplemento. Calcule esse ângulo.
(R:
8) Calcule a medida de um ângulo que é igual ao triplo de seu suplemento.
(R:
9) O dobro da medida de um ângulo é igual à medida do suplemento desse ângulo. Calcule a medida do ângulo.
(R:
10) O triplo da medida de um ângulo mais a medida do suplemento desse ângulo é 250°. Calculo a medida do ângulo.
(R:
11) Calcule a medida de um ângulo cuja medida é igual a 2/3 do seu suplemento.
(R:
12) A soma do complemento com o suplemento de um ângulo é 110° . Quanto mede o ângulo?
(R:


ÂGULOS OPOSTOS PELO VÉRTICE



Duas retas concorrentes determinam quatro ângulos, dois a dois , opostos pelo vértice


Na figura:

â e  c são opostos pelo vértice.
m e n são opostos pelo vértice


TEOREMA

Dois ângulos opostos´pelo vértice são congruentes.

prova:

Sejam os ângulos a e b opostos pelo vértice.

1) m(â) + m(^c) = 180°

2) m(b) + m(c) = 180°

comparando : m(â) + m(c) = m(b) + m(c)

m(â) = m(b)


Se a e b têm a mesma medida, eles são congruentes.



EXECÍCIOS

1) Quais são os 3 pares de ângulos opostos pelo vértice?



2)  Se x = 50° , determine y, m e n:



3) Calcule os ângulos x,y, z e w da figura:



4) Calcule os ângulos x, y e z das figuras:


5) Calcule x:






6) Calcule x:



7) Calcule x :


8) Calcule x:






9) As medidas de dois ângulos opostos pelo vértice são expressas em graus por  15x - 14° e 3x + 10°. Quanto vale x?

10) As medidas de dois ângulos opostos pelo vértice são expressas em graus por (2m - 50) e (m + 35). Quanto vale m?



ÂNGULOS FORMADFOS POR DUAS RETAS PARALELAS E UMA TRANSVERSAL

Duas retas r e s, interceptadas  pela transversalo t, formam oito ângulos.





Os pares de ângulos com um vértice em A e o outro em B são assim determinados:

= Correspondentes: 1 e 5, 4 e 8, 2 e 6, 3 e 7
= Colaterais Internos: 4 e 5, 3 e 6
= Colaterais externos: 1 e 8, 2 e 7
= Alternos internos: 4 e 6, 3 e 5
= Alternos externos: 1 e 7, 2 e 8


ILUSTRANDO:

= ALTERNOS (um de cada "lado" da transversal).
= COLATERAIS (ambos do mesmo "lado" da transvwesal)





EXERCÍCIOS


1) Dê o nome dos pares de ângulod de acordo com a figura:




a) a e g
b) a e e
c) d e h
d) c e g
e) c e e
f) a e f
g) b e h
h) b e f
i) d e f
j) c e e
l) c e h
m) b e e

PROPRIEDADES

Considere duas retas paralelas e uma transversal.



 




Medindo esses ângulos com o transferidor, você vai concluir que são validas as seguintes propriedades:
= Os ângulos correspondentes são congruentes
= Os ângulos alternos externos são congruentes
= Os ângulos alternos internos são congruentes.
= Os ângulos colaterais externos são suplememntares.
= Os ângulos colaterais internos são suplementares

EXERCÍCIOS

1)  Sabendo que r//s, determine a medida dos ângulos indicados:

a)



b)



c)


d)


2) Sabendo que r // a , calcule x:

a)

b)


c)


d)

jmpgeo.blogspot.com.b

Nenhum comentário:

Postar um comentário