segunda-feira, 6 de abril de 2020

SEMELHANÇA



Conceito:

Duas figuras são semelhantes se tiverem a mesma forma (não importa o tamanho).


EXEMPLOS




Dizdemos que:

-- Duas circunferências são sempre semelhantes.
-- Dois quadrados são sempre semelhantes.


TRIÂNGULO SEMELHANTES


Observe que:
-- Os ângulos correspondentes são congruentes.
-- Os lados correspondentes são proporcionais

Então:

Dois triângulos semelhantes têm ângulos correspondentes congruentes e lados correspondentes proporcionais

em simbolos:

Observação: A constante K é chamada razão de semelhança


EXERCÍCIOS RESOLVIDOS


Solução:

Como os triângulos são semelhantes, temos:

a) 3/6 = x/8 =y/11

3/6 = x/8
6x= 24/6
x = 4

b) 3/6 = y/11
6y = 33
y = 5,5

EXERCÍCIOS

1) Sabendo-se que os triângulos são semelhantes, calcule x e y



TEOREMA FUNDAMENTAL

Toda a reta paralela a um lado de um triângulo e que intercepta os outros dois lados determina um triângulo semelhante ao primeiro.


Devemos provar que os triângulos ADE e ABC têm os três ângulos correspondentes congruentes e os lados correspondentes proporcionais.

1º parte


 2º Parte

Nos triângulos os lados correspondentes são proporcionais 
.


CASOS DE SEMELHANÇA DE TRIÂNGULO

Não é necessário conhecer todas as condições de semelhança de triângulos para chegar à conclusão de que eles são semelhantes basta algumas delas. 

1) CASO AA (ângulo - ângulo)

Dois triângulos são semelhantes se têm dois ângulos correspondentes congruentes.


2) CASO LAL (lado - ângulo - lado)

Dois triângulos são semelhantes se têm dois lados correspondentes proporcionais e o ângulo correspondente entre eles congruentes.

3) CASO LLL (lado --lado--Lado)

Dois triângulos são semelhantes se têm os lados correspondentes proporcionais

EXERCÍCIOS RESOLVIDOS


1) Na figura abaixo, os triângulos são semelhantes. Calcular x


2) Na figura abaixo, os triângulos são semelhantes. Calcule x.


EXERCÍCIOS 


2) Calcule y:

3) Calcule x:



4) Calcule y , sabendo que os triângulos são semelhantes:

fonte:jmpgeograafia.blogspot.com.br

Nenhum comentário:

Postar um comentário