Pular para o conteúdo principal

Cônicas

Geometria Analítica - Cônicas
Elipse
Considerando, num plano , dois pontos distintos, F1 e F2 , e sendo 2a um número real maior que a distância entre F1 e F2, chamamos de elipse o conjunto dos pontos do plano tais que a soma das distâncias desses pontos a F1 e F2 seja sempre igual a 2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo plano e F1F2 <>

A figura obtida é uma elipse.
Observações:
1ª) A Terra descreve uma trajetória elíptica em torno do sol, que é um dos focos dessa trajetória.
A lua em torno da terra e os demais satélites em relação a seus respectivos planetas também apresentam esse comportamento.
2ª) O cometa de Halley segue uma órbita elíptica, tendo o Sol como um dos focos.
3ª) As elipses são chamadas cônicas porque ficam configuradas pelo corte feito em um cone circular reto por um plano oblíquo em relação à sua base.
Elementos
Observe a elipse a seguir. Nela, consideramos os seguintes elementos:
  • focos : os pontos F1 e F2
  • centro: o ponto O, que é o ponto médio de
  • semi-eixo maior: a
  • semi-eixo menor: b
  • semidistância focal: c
  • vértices: os pontos A1, A2, B1, B2
  • eixo maior:
  • eixo menor:
  • distância focal:
Relação fundamental
Na figura acima, aplicando o Teorema de Pitágoras ao tri6angulo OF2B2 , retângulo em O, podemos escrever a seguinte relação fundamental:

a2 =b2 + c2
Excentricidade
Chamamos de excentricidade o número real e tal que:

Pela definição de elipse, 2c <>
Observação:Quando os focos são muito próximos, ou seja, c é muito pequeno, a elipse se aproxima de uma circunferência.
Equações
Vamos considerar os seguintes casos:
a) elipse com centro na origem e eixo maior horizontal
Sendo c a semidistância focal, os focos da elipse são F1(-c, 0) e F2(c, 0):
Aplicando a definição de elipse , obtemos a equação da elipse:

b) elipse com centro na origem e eixo maior vertical
Nessas condições, a equação da elipse é:

Hipérbole
Considerando, num plano , dois pontos distintos, F1 e F2 , e sendo 2a um número real menor que a distância entre F1 e F2 , chamamos de hipérbole o conjunto dos pontos do plano tais que o módulo da diferença das distâncias desses pontos a F1 e F2 seja sempre igual a 2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo plano e F1F2 = 2c, temos:

A figura obtida é uma hipérbole.
Observação:Os dois ramos da hipérbole são determinados por um plano paralelo ao eixo de simetria de dois cones circulares retos e opostos pelo vértice:

Elementos
Observe a hipérbole representada a seguir. Nela, temos os seguintes elementos:
  • focos: os pontos F1 e F2
  • vértices: os pontos A1 e A2
  • centro da hipérbole: o ponto O, que é o ponto médio de
  • semi-eixo real: a
  • semi-eixo imaginário: b
  • semidistância focal: c
  • distância focal:
  • eixo real:
  • eixo imaginário:
Excentricidade
Chamamos de excentricidade o número real e tal que:
Como c > a, temos e > 1.
Equações
Vamos considerar os seguintes casos:
a) hipérbole com centro na origem e focos no eixo Ox

F1 (-c, 0)
F2 ( c, 0)
Aplicando a definição de hipérbole:
Obtemos a equação da hipérbole:
b) hipérbole com centro na origem e focos no eixo Oy
Nessas condições, a equação da hipérbole é:

Hipérbole eqüilátera
Uma hipérbole é chamada eqüilátera quando as medidas dos semi-eixos real e imaginário são iguais:

a = b
Assíntotas da hipérbole
Assíntotas são retas que contêm as diagonais do retângulo de lados 2a e 2b.
Quando o eixo real é horizontal, o coeficiente angular dessas retas é ; quando é vertical, o coeficiente é .
Equação
Vamos considerar os seguintes casos:
a) eixo real horizontal e C(0, 0)
As assíntotas passam pela origem e têm coeficiente angular ; logo, suas equações são da forma:
b) eixo vertical e C(0, 0)
As assíntotas passam pela origem e têm coeficiente angular ; logo, suas equações são da forma:
Parábola
Dados uma reta d e um ponto F , de um plano , chamamos de parábola o conjunto de pontos do plano eqüidistantes de F e d.
Assim, sendo, por exemplo, F, P, Q e R pontos de um plano e d uma reta desse mesmo plano, de modo que nenhum ponto pertença a d, temos:

Observações:
1ª) A parábola é obtida seccionando-se obliquamente um cone circular reto:
2ª) Os telescópios refletores mais simples têm espelhos com secções planas parabólicas.
3ª) As trajetórias de alguns cometas são parábolas, sendo que o Sol ocupa o foco.
4ª) A superfície de um líquido contido em um cilindro que gira em torno de seu eixo com velocidade constante é parabólica.
Elementos
Observe a parábola representada a seguir. Nela, temos os seguintes elementos:
  • foco: o ponto F
  • diretriz: a reta d
  • vértice: o ponto V
  • parâmetro: p
Então, temos que:
  • o vértice V e o foco F ficam numa mesma reta, o eixo de simetria e.
Assim, sempre temos .
  • DF =p
  • V é o ponto médio de
Equações
Vamos considerar os seguintes casos:
a) parábola com vértice na origem, concavidade para a direita e eixo de simetria horizontal
Como a reta d tem equação e na parábola temos:
  • ;
  • P(x, y);
  • dPF = dPd ( definição);
obtemos, então, a equação da parábola:

y2 = 2px
b) parábola com vértice na origem, concavidade para a esquerda e eixo de simetria horizontal
Nessas condições, a equação da parábola é:

y2 = -2px
c) parábola com vértice na origem, concavidade para cima e eixo de simetria vertical

x2=2py
d) parábola com vértice na origem, concavidade para baixo e eixo de simetria vertical


www.somatematica.com.br

Comentários

Postagens mais visitadas deste blog

EQUAÇÃO DE 1° GRAU

EQUAÇÃO DE 1° GRAU SENTENÇAS Uma sentença matemática pode ser verdadeira ou falsa exemplo de uma sentença verdadeira a) 15 + 10 = 25 b) 2 . 5 = 10 exemplo de uma sentença falsa a) 10 + 3 = 18 b) 3 . 7 = 20 SENTEÇAS ABERTAS E SENTENÇAS FECHADAS Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ou incógnitas. exemplos a) x + 4 = 9 (a variável é x) b) x + y = 20 (as variáveis são x e y) Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas. a) 15 -5 = 10 (verdadeira) b) 8 + 1 = 12 (falsa) EQUAÇÕES Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade exemplos a) x - 3 = 13 ( a variável ou incógnita x) b) 3y + 7 = 15 ( A variável ou incógnita é y) A expressão à esquerdas do sinal = chama-se 1º membro A expressão à direita do sinal do igual = chama-se 2º membro RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL O processo de res

VALOR NÚMERICO DE UMA EXPRESSÃO ALGÉBRICA

Para obter o valor numérico de uma expressão algébrica, você deve proceder do seguinte modo: 1º Substituir as letras por números reais dados. 2º Efetuar as operações indicadas, devendo obedecer à seguinte ordem: a) Potenciação b) Divisão e multiplicação c) Adição e subtração IMPORTANTE! Convém utilizar parênteses quando substituímos letras por números negativos Exemplo 1 Calcular o valor numérica de 2x + 3a para x = 5 e a = -4 2.x+ 3.a 2 . 5 + 3 . (-4) 10 + (-12) -2 Exemplo 2 Calcular o valor numérico de x² - 7x +y para x = 5 e y = -1 x² - 7x + y 5² - 7 . 5 + (-1) 25 – 35 -1 -10 – 1 -11 Exemplo 3 Calcular o valor numérico de : 2 a + m / a + m ( para a = -1 e m = 3) 2. (-1) + 3 / (-1) + 3 -2 + 3 / -1 +3 ½ Exemplo 4 Calcular o valor numérico de 7 + a – b (para a= 2/3 e b= -1/2 ) 7 + a – b 7 + 2/3 – (-1/2) 7 + 2/3 + 1 / 2 42/6 + 4/6 + 3/6 49/6 EXERCICIOS 1) Calcule o valor numérico das expressões: a) x – y (para x =5 e y = -4) (R:

OPERAÇÕES COM RADICAIS

RADICAIS SEMELHANTES Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando Exemplos de radicais semelhantes a) 7√5 e -2√5 b) 5³√2 e 4³√2 Exemplos de radicais não semelhantes a) 5√6 e 2√3 b) 4³√7 e 5√7 ADIÇÃO E SUBTRAÇÃO 1º CASO : Os radicais não são semelhantes Devemos proceder do seguinte modo: a) Extrair as raízes (exatas ou aproximadas) b) Somar ou subtrair os resultados Exemplos 1) √16 + √9 = 4 + 3 = 7 2) √49 - √25 = 7 – 5 = 2 3) √2 + √3 = 1,41 + 1,73 = 3,14 Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica) EXERCÍCIOS 1) Calcule a) √9 + √4 = 5 b) √25 - √16 = 1 c) √49 + √16 = 11 d) √100 - √36 = 4 e) √4 - √1 = 1 f) √25 - ³√8 = 3 g) ³√27 + ⁴√16 = 5 h) ³√125 - ³√8 = 3 i) √25 - √4 + √16 = 7 j) √49 + √25 - ³√64 = 8 2º CASO : Os radicais são semelhantes. Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de