Se você somar 1 ao produto de quatro números inteiros consecutivos, o resultado sempre será um quadrado perfeito.
Em outros termos, o que devemos demonstrar é:
Dado um número x inteiro qualquer o resultado da operação R = x(x + 1)(x + 2)(x + 3) + 1 será sempre um quadrado perfeito, isto é, um número inteiro elevado ao quadrado.
Então, vamos começar, como não poderia deixar de ser, realizando umas “continhas” utilizando-se da propriedade distributiva da multiplicação, para reescrever R:
R = (x2 + x)(x + 2)(x + 3) + 1 = (x3 + 2x2 + x2 + 2x)(x + 3) + 1 =>
R = (x3 + 3x2 + 2x)(x + 3) + 1 = x4 + 3x3 + 3x3 + 9x2 + 2x2 + 6x + 1
Agrupando os termos de R, na expressão acima, obtemos:
R = (x4 + 6x3 + 9x2) + 2(x2 + 3x) + 1
Agora, repare bem, bem mesmo, na primeira expressão entre parêntesis, lembre-se do velho e conhecido Produtos Notáveis e conclua comigo que:
R = (x2 + 3x)2 + 2(x2 + 3x) + 1 [1]
Para facilitar o entendimento final da demonstração, vamos definir y como:
y = (x2 + 3x) [2]
e substituir em [1] para concluir que:
R = y2 + 2y + 1 = (y + 1)2 [3]
é um quadrado perfeito, onde em [3], mais uma vez, utilizamos a propriedade dos produtos notáveis: Quadrado da soma de dois números. Tem dúvidas, consulte o artigo indicado no link acima sobre o tema.
Para finalizar, vamos a um exemplo: dado x = 4 vem que R = (4×5×6×7) + 1 = 841. Tudo bem, até aí está fácil. Mas como saber se 841 ou um número bem maior é um quadrado perfeito sem muito esforço – extração da raiz quadrada.
Tranquilo. Utilize a expressão [2] para determinar y = (16 + 12) = 28 e substitua em [3] para concluir que R = 292 = 841.
Nenhum comentário:
Postar um comentário