cead20136

Pesquisar no blog

Carregando...

Pesquisar na net

Custom Search

sexta-feira, 25 de abril de 2014

OPERAÇÕES COM MONÔMIOS


Adição e subtração
Eliminam-se os parênteses e reduzem-se os termos semelhantes.

Exemplos 1
(+8x) + (-5x)
8x – 5x
3x

Exemplo 2
(-7x ) – ( +x)
-7x – x
-8x

Exemplo 3
(2/3x) – (-1/2x)
2/3x + 1/2x
4x/6 + 3x/6
7x/6


EXERCÍCIOS


1) Efetue:

a) (+7x) + (-3x) = (R: 4x)
b) (-8x) + (+11x) = (R: 3x )c) (-2y) + (-3y) = (R: -5y)
d) (-2m) + (-m) = (R: -3m)
e) (+5a²) + (-3a²) = (R: 2a²)
f) (+5x) + (-5x) = (R: 0)
g) (+6x) + (-4x) = (R: 2x)
h) (-6n) + (+n) = (R: -4n)
i) (+8x) – ( -3x) = (R: 11x)
j) (-5x) – (-11x) = (R: 6x)
k) (-6y) – (-y) = (R: -5y)
l) (+7y) – (+7y) = (R: 0 )m) (-3x) – (+4x) = (R -7x)
n) (-6x) – ( -x) = (R: -5x)
o) (+2y) – (+5y) = (R: -3y )p) (-m) –(-m) = (R: 0 )
2) Efetue :

a) (+ 3xy) – (-xy) + (xy) = (R: 5xy)
b) (+ 15x) – (-3x) – (+7x) + (-2x) = (R: 9x )c) (-9y) –( +3y) – (+y) + (-2y) = (R: -15y)
d) (3n) + (-8n) + (+4n) – (-5n) – (-n) = (R: 5n)

3) Efetue:

a) (+1/2x) + (-1/3x) = (R: 1x/6)
b) ( -2/5x) + (-2/3x) = (R: -16x/15)
c) (-7/2y) + (+1/4y) = (R: -13y/4)
d) (+2m) +( -3/4m) = (R: 5m/4)
e) (+2/3x) - ( -3/2x) = (R: 13x/6)
f) (-3/4y) – (+1/2y) = (R: -5y/4)
g) (+2/5m) – (+2/3m) = (-4m/15)
h) (-3x) –(-2/5x) = (R: 13x/5)



MULTIPLICAÇÃO

Vamos Calcular:
(3x²) . (2x⁵) =
( 3 . x . x) . ( 2 .x.x.x.x.x.)=
3 .2 x.x.x.x.x.x.x =
6x⁷

Conclusão: multiplicam-se os coeficientes e as partes literais

Exemplos

a) (3x⁴) . (-5x³) = -15x⁷
b) (-4x) . (+3x) = -12x²
c) (-2y⁵) . (-7y ) = 14y⁶
d) (3x) . ( 2y) = 6xy


EXERCÍCIOS


1) Calcule:
a) (+5x) . (-4x²) = (R: -20x³)
b) (-2x) . (+3x) = (R: -6x²)c) (+5x) . (+4x) = (R: 20x²)
d) (-n) . (+ 6n) = (R: -6n²)e) (-6x) . (+3x²) = (R: -18x³)
f) (-2y) . (5y) = (R: -10y²)
g) (+4x²) . (+5x³) = (R: 20x⁵)
h) (2y) . (-7x) = (R: -14yx)
i) (-2x) . (-3y) = (R: 6xy)
j) (+3x) . (-5y) = (R: -15xy)
k) (-3xy) . (-2x) = (R: 6x²y)
2) Calcule

a) (2xb) . (4x) = (R: 8x²b)
b) (-5x²) . (+5xy²) = ( R: -25 x³y²)c) (-5) . (+15x²y) = (R: -75 x²y)
d) (-9X²Y) . (-5XY²) = (R: 45x³y³)e) (+3X²Y) . (-XY) = ( R: -3x³y²)
f) (X²Y³) . (5X³Y²) =
g) (-3x) . (+2xy) . ( -x³) = (R: 6x⁵y)h) (-x³) . (5yx²) . (2y³) =
i) (-xy) . (-xy) . (-xy) =
j) (-xm) . ( x²m) . (3m) =

3) Calcule:

a) (1/2x) . (3/5x³) =
b) (-2/3x) . (+3/4y) =
c) (-1/3x²) . (4/3x³) =
d) (-x²/3) . (-x/2) =
e) (-2x/3) . (6x/5) =
f) (-10xy) . ( xy²/3) =

DIVISÃO


Vamos calcula:

(15x⁶) : (5x²) =
15 . x . x . x. x. x. x : 3 . x . x
3 . x . x . x . x
3x⁴

Conclusão: dividem-se os coeficientes e as partes literais

Exemplos

a) (21x⁶) : (-7x⁴) = -3x²
b) (-10x³) : (-2x²) = +5x
c) (-15x³y) : ( -5xy) = +3x²

EXERCÍCIOS

1) Calcule os quocientes:

a) (15x⁶) : (3x²) =
b) (16x⁴) : (8x) =
c) (-30x⁵) : (+3x³) =
d) (+8x⁶) : (-2x⁴) =
e) (-10y⁵) : (-2y) =
f) (-35x⁷) : ( +5x³) =
g) (+15x⁸) : (-3x²) =
h) (-8x) : (-8x) =
i) (-14x³) : (+2x²) =
j) (-10x³y) : (+5x²) =
k) (+6x²y) : (-2xy) =
l) (-7abc) : (-ab) =
m) (15x⁷) : ( 6x⁵) =
n) (20a³b²) : ( 15ab²) =
o) (+1/3x³) : (-1/5x²) =
p) (-4/5x⁵y) : ( -4/3x³y) =
q) (-2xy²) : ( xy/4) = (R: -8y)

POTENCIAÇÃO
Vamos calcular:

(5a³m)² = 25 a⁶m

Conclusão : Para elevarmos um monômio a uma potência, elevamos cada um de seus fatores a essa potência.

Exemplos

1) (-7x)² = 49 x²
2) (-3x²y)³ = -27x⁶y³
3) (- 1/4x⁴)² = 1/16x⁸


EXERCÍCIOS

1) Calcule:

a) ( + 3x²)² =
b) (-8x⁴)² =
c) (2x⁵)³ =
d) (3y²)³ =
e) (-y²)⁴ =
f) (-mn)⁴ =
g) (2xy²)⁴ =
h) (-4x²b)² =
i) (-3y²)³ =
j) (-6m³)² =
k) (-3x³y⁴)⁴ =
l) (-2x²m³)³ =

2) Calcule:

a) (x²/2)³ =
b) (-x²/4)² =
c) (-1/2y)² =
d) (+2/3x)³ =
e) (-3/4m)² =
f) (-5/6m³)² =

RAIZ QUADRADA

Aplicando a definição de raiz quadrada, temos:

a) √49x² = 7x, pois (7x)² = 49x²
b) √25x⁶ = 5x³, pois (5x³)² = 25x⁶

Conclusão: para extrair a raiz quadrada de um monômio, extraímos a raiz quadrada do coeficiente e dividimos o expoente de cada variável por 2

Exemplos:

a) √16x⁶ = 4x³
b) √64x⁴b² = 8x²b

Obs: Estamos admitindo que os resultados obtidos não assumam valores numéricos negativos

EXERCÍCIOS

1) Calcule

a) √4x⁶ =
b) √x²y⁴ =
c) √36c⁴ =
d) √81m² =
e) √25x¹² =
f) √49m¹⁰ =
g) √9xb² =
h) √9x²y² =
i) √16x⁸ =

2) Calcule:

a) √x²/49 =
b) √x²/25 =
c) √4/9x⁸ =
d) √49/64x¹⁰ =
e) √25/81yx⁶ =
f) √121/100 x²m⁸ =

Nenhum comentário:

Postar um comentário

co

assine o feed

Postagens

acompanhe

Comentários

comente também

Widget Códigos Blog modificado por Dicas Blogger